Browsing by Subject "EPIGENETIC REGULATION"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Voronova, Angelika; Rendón-Anaya, Martha; Ingvarsson, Pär; Kalendar, Ruslan; Ruņģis, Dainis (2020)
    Sequencing the giga-genomes of several pine species has enabled comparative genomic analyses of these outcrossing tree species. Previous studies have revealed the wide distribution and extraordinary diversity of transposable elements (TEs) that occupy the large intergenic spaces in conifer genomes. In this study, we analyzed the distribution of TEs in gene regions of the assembled genomes of Pinus taeda and Pinus lambertiana using high-performance computing resources. The quality of draft genomes and the genome annotation have significant consequences for the investigation of TEs and these aspects are discussed. Several TE families frequently inserted into genes or their flanks were identified in both species' genomes. Potentially important sequence motifs were identified in TEs that could bind additional regulatory factors, promoting gene network formation with faster or enhanced transcription initiation. Node genes that contain many TEs were observed in multiple potential transposable element-associated networks. This study demonstrated the increased accumulation of TEs in the introns of stress-responsive genes of pines and suggests the possibility of rewiring them into responsive networks and sub-networks interconnected with node genes containing multiple TEs. Many such regulatory influences could lead to the adaptive environmental response clines that are characteristic of naturally spread pine populations.
  • Alasaari, Jukka S.; Lagus, Markus; Ollila, Hanna M.; Toivola, Auli; Kivimäki, Mika; Vahtera, Jussi; Kronholm, Erkki; Harma, Mikko; Puttonen, Sampsa; Paunio, Tiina (2012)
  • Khulan, B.; Manning, J. R.; Dunbar, D. R.; Seckl, J. R.; Raikkonen, K.; Eriksson, J. G.; Drake, A. J. (2014)
  • Bompada, Pradeep; Atac, David; Luan, Cheng; Andersson, Robin; Omella, Judit Domenech; Laakso, Emilia Ottosson; Wright, Jason; Groop, Leif; De Marinis, Yang (2016)
    Thioredoxin-interacting protein (TXNIP) has been shown to be associated with glucose-induced deterioration of pancreatic beta cell function in diabetes. However, whether epigenetic mechanisms contribute to the regulation of TXNIP gene expression by glucose is not clear. Here we studied how glucose exerts its effect on TXNIP gene expression via modulation of histone acetylation marks. To achieve this, we applied clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) to knock out his tone acetyltransferase (HAT) p300 in a rat pancreatic beta cell line INS1 832/13. We also treated the cells and human islets with chemical inhibitors of HAT p300 and histone deacetylase (HDAC). In human islets, diabetes and high glucose resulted in elevated TXNIP and EP300 expression, and glucose-induced TXNIP expression could be reversed by p300 inhibitor C646. In INS1 832/13 cells, Ep300 knock-out by CRISPR/Cas9 elevated glucose-induced insulin secretion and greatly reduced glucose-stimulated Txnip expression and cell apoptosis. This effect could be ascribed to decrease in histone marks H3K9ac and H4ac at the promoter and first coding region of the Txnip gene. Histone marks H3K9ac and H4ac in the Txnip gene in the wild-type cells was inhibited by HDAC inhibitor at high glucose, which most likely was due to enhanced acetylation levels of p300 after HDAC inhibition; and thereby reduced p300 binding to the Txnip gene promoter region. Such inhibition was absent in the Ep300 knock-out cells. Our study provides evidence that histone acetylation serves as a key regulator of glucose-induced increase in TXNIP gene expression and thereby glucotoxicity-induced apoptosis. (C) 2016 Elsevier Ltd. All rights reserved.
  • Kulesskaya, Natalia; Karpova, Nina N.; Ma, Li; Tian, Li; Voikar, Vootele (2014)
  • Neyazi, Alexandra; Theilmann, Wiebke; Brandt, C; Rantamäki, Tomi Pentti Johannes; Matsui, Nobuaki; Rhein, M; Kornhuber, J; Bajbouj, M; Sperling, W; Bleich, S; Frieling, H; Löscher, W (2018)
    Although electroconvulsive therapy (ECT) is among the most effective treatment options for pharmacoresistant major depressive disorder (MDD), some patients still remain refractory to standard ECT practise. Thus, there is a need for markers reliably predicting ECT non/response. In our study, we have taken a novel translational approach for discovering potential biomarkers for the prediction of ECT response. Our hypothesis was that the promoter methylation of p11, a multifunctional protein involved in both depressive-like states and antidepressant treatment responses, is differently regulated in ECT responders vs. nonresponders and thus be a putative biomarker of ECT response. The chronic mild stress model of MDD was adapted with the aim to obtain rats that are resistant to conventional antidepressant drugs (citalopram). Subsequently, electroconvulsive stimulation (ECS) was used to select responders and nonresponders, and compare p11 expression and promoter methylation. In the rat experiments we found that the gene promoter methylation and expression of p11 significantly correlate with the antidepressant effect of ECS. Next, we investigated the predictive properties of p11 promoter methylation in two clinical cohorts of patients with pharmacoresistant MDD. In a proof-of-concept clinical trial in 11 patients with refractory MDD, higher p11 promoter methylation was found in responders to ECT. This finding was replicated in an independent sample of 65 patients with pharmacoresistant MDD. This translational study successfully validated the first biomarker reliably predicting the responsiveness to ECT. Prescreening of this biomarker could help to identify patients eligible for first-line ECT treatment and also help to develop novel antidepressant treatment procedures for depressed patients resistant to all currently approved antidepressant treatments.
  • Cai, Mengyin; Bompada, Pradeep; Salehi, Albert; Acosta, Juan R.; Prasad, Rashmi B.; Atac, David; Laakso, Markku; Groop, Leif; De Marinis, Yang (2018)
    Osteopontin (OPN) is involved in various physiological processes and also implicated in multiple pathological states. It has been suggested that OPN may have a role in type 2 diabetes (T2D) by protecting pancreatic islets and interaction with incretins. However, the regulation and function of OPN in islets, especially in humans, remains largely unexplored. In this study, we performed our investigations on both diabetic mouse model SUR1-E1506K+/+ and islets from human donors. We demonstrated that OPN protein, secretion and gene expression was elevated in the diabetic SUR1-E1506K+/+ islets. We also showed that high glucose and incretins simultaneously stimulated islet OPN secretion. In islets from human cadaver donors, OPN gene expression was elevated in diabetic islets, and externally added OPN significantly increased glucose-stimulated insulin secretion (GSIS) from diabetic but not normal glycemic donors. The increase in GSIS by OPN in diabetic human islets was Ca2+ dependent, which was abolished by Ca2+-channel inhibitor isradipine. Furthermore, we also confirmed that OPN promoted cell metabolic activity when challenged by high glucose. These observations provided evidence on the protective role of OPN in pancreatic islets under diabetic condition, and may point to novel therapeutic targets for islet protection in T2D. (C) 2017 Elsevier Inc. All rights reserved.
  • Ramakrishnan, Muthusamy; Satish, Lakkakula; Kalendar, Ruslan; Mathiyazhagan, Narayanan; Sabariswaran, Kandasamy; Sharma, Anket; Emamverdian, Abolghassem; Wei, Qiang; Zhou, Mingbing (2021)
    Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.