Browsing by Subject "EPISODIC MEMORY"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Lindgren, Noora; Kaprio, Jaakko; Rinne, Juha; Vuoksimaa, Eero (2019)
    Objective To investigate the effect of familial risk for dementia on verbal learning by comparing cognitively healthy twins who had demented co-twins with cognitively healthy twins who had cognitively healthy co-twins. Methods 4367 twins aged >= 65 years including 1375 twin pairs (533 monozygotic (MZ), 823 dizygotic (DZ) and 19 unknown zygosity pairs) from a population-based Finnish Twin Cohort participated in a cross-sectional telephone assessment for dementia and in a single free recall trial of a 10-item word list. Results Cognitively healthy twins with demented co-twins (n=101 pairs) recalled less words than cognitively healthy twins with cognitively healthy co-twins (n=770 pairs) after adjusting for age, sex and education, B=-0.44, 95% C I (-0.73 to -0.14), p=0.003. The effect size was similar in MZ (n=31) twins (3.88 vs 4.29 words, B=-0.41, 95% C I (-0.96 to 0.13)) and DZ (n=66) twins (3.70 vs 4.17 words, B=-0.47, 95% C I (-0.84 to -0.10)). The heritability estimate of immediate recall (IR) was 0.37, 95% C I (0.21 to 0.43). Conclusions The results demonstrate that familial risk for dementia is reflected in the IR performance of cognitively healthy older persons. The finding of poorer IR performance in non-affected siblings compared with the general population, together with substantial heritability of IR, supports IR as a useful endophenotype for molecular genetic studies of dementia.
  • Riekki, Tapani; Salmi, Juha; Svedholm-Häkkinen, Annika M.; Lindeman, Marjaana (2018)
    According to the Empathizing-Systemizing theory (E-S Theory), individual differences in how people understand the physical world (systemizing) and the social world (empathizing), are two continuums in the general population with several implications, from vocational interests to skills in the social and physical domains. The underlying mechanisms of intuitive physics performance among individuals with strong systemizing and weak empathizing (systemizers) are, however, unknown. Our results affirm higher intuitive physics skills in healthy adult systemizers (N=36), and further reveal the brain mechanisms that are characteristic for those individuals in carrying out such tasks. When the participants performed intuitive physics tasks during functional magnetic resonance imaging, combined higher systemizing and lower empathizing was associated with stronger activations in parts of the default mode network (DMN, cuneus and posterior cingulate gyrus), middle occipital gyrus, and parahippocampal region. The posterior cingulate gyrus and parahippocampal gyrus were specifically associated with systemizing "brain type" even after controlling for task performance, while especially in the parietal cortex, the activation changes were simply explained by higher task performance. We therefore suggest that utilization of DMN-parahippocampal complex, suggested to play a role in internalizing and activating long-term spatial memory representations, is the factor that distinguishes systemizers from empathizers with the opposite "brain type" in intuitive physics tasks.
  • Hakonen, Maria; May, Patrick J. C.; Jaaskelainen, Iiro P.; Jokinen, Emma; Sams, Mikko; Tiitinen, Hannu (2017)
    Introduction: We examined which brain areas are involved in the comprehension of acoustically distorted speech using an experimental paradigm where the same distorted sentence can be perceived at different levels of intelligibility. This change in intelligibility occurs via a single intervening presentation of the intact version of the sentence, and the effect lasts at least on the order of minutes. Since the acoustic structure of the distorted stimulus is kept fixed and only intelligibility is varied, this allows one to study brain activity related to speech comprehension specifically. Methods: In a functional magnetic resonance imaging (fMRI) experiment, a stimulus set contained a block of six distorted sentences. This was followed by the intact counterparts of the sentences, after which the sentences were presented in distorted form again. A total of 18 such sets were presented to 20 human subjects. Results: The blood oxygenation level dependent (BOLD)-responses elicited by the distorted sentences which came after the disambiguating, intact sentences were contrasted with the responses to the sentences presented before disambiguation. This revealed increased activity in the bilateral frontal pole, the dorsal anterior cingulate/paracingulate cortex, and the right frontal operculum. Decreased BOLD responses were observed in the posterior insula, Heschl's gyrus, and the posterior superior temporal sulcus. Conclusions: The brain areas that showed BOLD-enhancement for increased sentence comprehension have been associated with executive functions and with the mapping of incoming sensory information to representations stored in episodic memory. Thus, the comprehension of acoustically distorted speech may be associated with the engagement of memory-related subsystems. Further, activity in the primary auditory cortex was modulated by prior experience, possibly in a predictive coding framework. Our results suggest that memory biases the perception of ambiguous sensory information toward interpretations that have the highest probability to be correct based on previous experience.
  • Cloninger, C. Robert; Cloninger, Kevin M.; Zwir, Igor; Keltikangas-Järvinen, Liisa (2019)
    Recent genome-wide association studies (GWAS) have shown that temperament is strongly influenced by more than 700 genes that modulate associative conditioning by molecular processes for synaptic plasticity and long-term learning and memory. The results were replicated in three independent samples despite variable cultures and environments. The identified genes were enriched in pathways activated by behavioral conditioning in animals, including the two major molecular pathways for response to extracellular stimuli, the Ras-MEK-ERK and the PI3K-AKT-mTOR cascades. These pathways are activated by a wide variety of physiological and psychosocial stimuli that vary in positive and negative valence and in consequences for health and survival. Changes in these pathways are orchestrated to maintain cellular homeostasis despite changing conditions by modulating temperament and its circadian and seasonal rhythms. In this review we first consider traditional concepts of temperament in relation to the new genetic findings by examining the partial overlap of alternative measures of temperament. Then we propose a definition of temperament as the disposition of a person to learn how to behave, react emotionally, and form attachments automatically by associative conditioning. This definition provides necessary and sufficient criteria to distinguish temperament from other aspects of personality that become integrated with it across the life span. We describe the effects of specific stimuli on the molecular processes underlying temperament from functional, developmental, and evolutionary perspectives. Our new knowledge can improve communication among investigators, increase the power and efficacy of clinical trials, and improve the effectiveness of treatment of personality and its disorders.
  • Zwir, Igor; Del-Val, Coral; Arnedo, Javier; Pulkki-Råback, Laura; Konte, Bettina; Yang, Sarah S.; Romero-Zaliz, Rocio; Hintsanen, Mirka; Cloninger, Kevin M.; Garcia, Danilo; Svrakic, Dragan M.; Lester, Nigel; Rozsa, Sandor; Mesa, Alberto; Lyytikainen, Leo-Pekka; Giegling, Ina; Kahonen, Mika; Martinez, Maribel; Seppala, Ilkka; Raitoharju, Emma; de Erausquin, Gabriel A.; Mamah, Daniel; Raitakari, Olli; Rujescu, Dan; Postolache, Teodor T.; Gu, C. Charles; Sung, Joohon; Lehtimäki, Terho; Keltikangas-Jarvinen, Liisa; Cloninger, C. Robert (2021)
    Phylogenetic, developmental, and brain-imaging studies suggest that human personality is the integrated expression of three major systems of learning and memory that regulate (1) associative conditioning, (2) intentionality, and (3) self-awareness. We have uncovered largely disjoint sets of genes regulating these dissociable learning processes in different clusters of people with (1) unregulated temperament profiles (i.e., associatively conditioned habits and emotional reactivity), (2) organized character profiles (i.e., intentional self-control of emotional conflicts and goals), and (3) creative character profiles (i.e., self-aware appraisal of values and theories), respectively. However, little is known about how these temperament and character components of personality are jointly organized and develop in an integrated manner. In three large independent genome-wide association studies from Finland, Germany, and Korea, we used a data-driven machine learning method to uncover joint phenotypic networks of temperament and character and also the genetic networks with which they are associated. We found three clusters of similar numbers of people with distinct combinations of temperament and character profiles. Their associated genetic and environmental networks were largely disjoint, and differentially related to distinct forms of learning and memory. Of the 972 genes that mapped to the three phenotypic networks, 72% were unique to a single network. The findings in the Finnish discovery sample were blindly and independently replicated in samples of Germans and Koreans. We conclude that temperament and character are integrated within three disjoint networks that regulate healthy longevity and dissociable systems of learning and memory by nearly disjoint sets of genetic and environmental influences.
  • Zwir, Igor; Arnedo, Javier; Del-Val, Coral; Pulkki-Raback, Laura; Konte, Bettina; Yang, Sarah S.; Romero-Zaliz, Rocio; Hintsanen, Mirka; Cloninger, Kevin M.; Garcia, Danilo; Svrakic, Dragan M.; Rozsa, Sandor; Martinez, Maribel; Lyytikäinen, Leo-Pekka; Giegling, Ina; Kähönen, Mika; Hernandez-Cuervo, Helena; Seppälä, Ilkka; Raitoharju, Emma; de Erausquin, Gabriel A.; Raitakari, Olli; Rujescu, Dan; Postolache, Teodor T.; Sung, Joohon; Keltikangas-Jarvinen, Liisa; Lehtimäki, Terho; Cloninger, C. Robert (2020)
    Experimental studies of learning suggest that human temperament may depend on the molecular mechanisms for associative conditioning, which are highly conserved in animals. The main genetic pathways for associative conditioning are known in experimental animals, but have not been identified in prior genome-wide association studies (GWAS) of human temperament. We used a data-driven machine learning method for GWAS to uncover the complex genotypic-phenotypic networks and environmental interactions related to human temperament. In a discovery sample of 2149 healthy Finns, we identified sets of single-nucleotide polymorphisms (SNPs) that cluster within particular individuals (i.e., SNP sets) regardless of phenotype. Second, we identified 3 clusters of people with distinct temperament profiles measured by the Temperament and Character Inventory regardless of genotype. Third, we found 51 SNP sets that identified 736 gene loci and were significantly associated with temperament. The identified genes were enriched in pathways activated by associative conditioning in animals, including the ERK, PI3K, and PKC pathways. 74% of the identified genes were unique to a specific temperament profile. Environmental influences measured in childhood and adulthood had small but significant effects. We confirmed the replicability of the 51 Finnish SNP sets in healthy Korean (90%) and German samples (89%), as well as their associations with temperament. The identified SNPs explained nearly all the heritability expected in each sample (37-53%) despite variable cultures and environments. We conclude that human temperament is strongly influenced by more than 700 genes that modulate associative conditioning by molecular processes for synaptic plasticity and long-term memory.
  • Sihvonen, Aleksi J.; Leo, Vera; Ripolles, Pablo; Lehtovaara, Terhi; Ylönen, Aki; Rajanaro, Pekka; Laitinen, Sari; Forsblom, Anita; Saunavaara, Jani; Autti, Taina; Laine, Matti; Rodriguez-Fornells, Antoni; Tervaniemi, Mari; Soinila, Seppo; Särkämö, Teppo (2020)
    Objective: Previous studies suggest that daily music listening can aid stroke recovery, but little is known about the stimulus-dependent and neural mechanisms driving this effect. Building on neuroimaging evidence that vocal music engages extensive and bilateral networks in the brain, we sought to determine if it would be more effective for enhancing cognitive and language recovery and neuroplasticity than instrumental music or speech after stroke. Methods: Using data pooled from two single-blind randomized controlled trials in stroke patients (N = 83), we compared the effects of daily listening to self-selected vocal music, instrumental music, and audiobooks during the first 3 poststroke months. Outcome measures comprised neuropsychological tests of verbal memory (primary outcome), language, and attention and a mood questionnaire performed at acute, 3-month, and 6-month stages and structural and functional MRI at acute and 6-month stages. Results: Listening to vocal music enhanced verbal memory recovery more than instrumental music or audiobooks and language recovery more than audiobooks, especially in aphasic patients. Voxel-based morphometry and resting-state and task-based fMRI results showed that vocal music listening selectively increased gray matter volume in left temporal areas and functional connectivity in the default mode network. Interpretation: Vocal music listening is an effective and easily applicable tool to support cognitive recovery after stroke as well as to enhance early language recovery in aphasia. The rehabilitative effects of vocal music are driven by both structural and functional plasticity changes in temporoparietal networks crucial for emotional processing, language, and memory.