Browsing by Subject "EPITHELIAL-CELLS"

Sort by: Order: Results:

Now showing items 1-20 of 29
  • Wondimu, Zenebech; Omrani, Shahin; Ishikawa, Taichi; Javed, Fawad; Oikawa, Yuko; Virtanen, Ismo; Juronen, Erkki; Ingerpuu, Sulev; Patarroyo, Manuel (2013)
  • Larson, Eric D.; Magno, Jose Pedrito M.; Steritz, Matthew J.; Llanes, Erasmo Gonzalo d; Cardwell, Jonathan; Pedro, Melquiadesa; Roberts, Tori Bootpetch; Einarsdottir, Elisabet; Rosanes, Rose Anne Q.; Greenlee, Christopher; Santos, Rachel Ann P.; Yousaf, Ayesha; Streubel, Sven-Olrik; Santos, Aileen Trinidad R.; Ruiz, Amanda G.; Mae Lagrana-Villagracia, Sheryl; Ray, Dylan; Yarza, Talitha Karisse L.; Scholes, Melissa A.; Anderson, Catherine B.; Acharya, Anushree; Gubbels, Samuel P.; Bamshad, Michael J.; Cass, Stephen P.; Lee, Nanette R.; Shaikh, Rehan S.; Nickerson, Deborah A.; Mohlke, Karen L.; Prager, Jeremy D.; Cruz, Teresa Luisa G.; Yoon, Patricia J.; Abes, Generoso T.; Schwartz, David A.; Chan, Abner L.; Wine, Todd M.; Maria Cutiongco-de la Paz, Eva; Friedman, Norman; Kechris, Katerina; Kere, Juha; Leal, Suzanne M.; Yang, Ivana; Patel, Janak A.; Tantoco, Ma Leah C.; Riazuddin, Saima; Chan, Kenny H.; Mattila, Petri S.; Reyes-Quintos, Maria Rina T.; Ahmed, Zubair M.; Jenkins, Herman A.; Chonmaitree, Tasnee; Hafren, Lena; Chiong, Charlotte M.; Santos-Cortez, Regie Lyn P. (2019)
    A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.
  • Palviainen, Mari J.; Junnikkala, Sami; Raekallio, Marja; Meri, Seppo; Vainio, Outi (2015)
  • Kakkola, L.; Denisova, O. V.; Tynell, J.; Viiliainen, J.; Ysenbaert, T.; Matos, R. C.; Nagaraj, A.; Öhman, Tiina; Kuivanen, S.; Paavilainen, H.; Feng, L.; Yadav, B.; Julkunen, I.; Vapalahti, O.; Hukkanen, V.; Stenman, J.; Aittokallio, T.; Verschuren, E. W.; Ojala, P. M.; Nyman, T.; Saelens, X.; Dzeyk, K.; Kainov, D. E. (2013)
  • Douillard, Francois P.; Mora, Diego; Eijlander, Robyn T.; Wels, Michiel; de Vos, Willem M. (2018)
    Several probiotic-marketed formulations available for the consumers contain live lactic acid bacteria and/or bifidobacteria. The multispecies product commercialized as VSL#3 has been used for treating various gastro-intestinal disorders. However, like many other products, the bacterial strains present in VSL#3 have only been characterized to a limited extent and their efficacy as well as their predicted mode of action remain unclear, preventing further applications or comparative studies. In this work, the genomes of all eight bacterial strains present in VSL#3 were sequenced and characterized, to advance insights into the possible mode of action of this product and also to serve as a basis for future work and trials. Phylogenetic and genomic data analysis allowed us to identify the 7 species present in the VSL#3 product as specified by the manufacturer. The 8 strains present belong to the species Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus helveticus, Bifidobacterium breve and B. animalis subsp. lactis (two distinct strains). Comparative genomics revealed that the draft genomes of the S. thermophilus and L. helveticus strains were predicted to encode most of the defence systems such as restriction modification and CRISPR-Cas systems. Genes associated with a variety of potential probiotic functions were also identified. Thus, in the three Bifidobacterium spp., gene clusters were predicted to encode tight adherence pili, known to promote bacteria-host interaction and intestinal barrier integrity, and to impact host cell development. Various repertoires of putative signalling proteins were predicted to be encoded by the genomes of the Lactobacillus spp., i.e. surface layer proteins, LPXTG-containing proteins, or sortase-dependent pili that may interact with the intestinal mucosa and dendritic cells. Taken altogether, the individual genomic characterization of the strains present in the VSL#3 product confirmed the product specifications, determined its coding capacity as well as identified potential probiotic functions.
  • Gursoy, Ulvi K.; Gursoy, Mervi; Kononen, Eija; Sintim, Herman O.; Uitto, Veli-Jukka; Syrjanen, Stina (2016)
    In construction of epithelial cells as multilayers, the cells are grown submerged to confluence on fibroblast-embedded collagen gels and, then, lifted to air to promote their stratification. We recently demonstrated that gingival epithelial cells form uniform monolayers on semi-permeable nitrocellulose membranes, supported with a semi-solid growth medium, which allows the cells to grow at an air-liquid-solid interface from the beginning of the culturing protocol. In this study, the aim was to further develop our previous model to form a multilayered gingival epithelial culture model. Two different epithelial cell lines (HaCaT from skin and HMK from gingiva) were used in all experiments. Both cell lines were grown first as monolayers for 3 days. After that, keratinocytes were trypsinized, counted and seeded on a sterile semi-permeable nitrocellulose membrane placed on the top of a semi-solid growth medium, forming an air-liquid-solid interface for the cells to grow. At days 1, 4, and 7, epithelial cells were fixed, embedded in paraffin, and sectioned for routine Hematoxylin-Eosin staining and immunohistochemistry for cytokeratin (Ck). At day 1, HMK cells grew as monolayers, while HaCaT cells stratified forming an epithelium with two to three layers. At day 4, a stratified epithelium in the HMK model had four to five layers and its proliferation continued up to day 7. HaCaT cells formed a dense and weakly proliferating epithelium with three to four layers of stratification at day 4 but the proliferation disappeared at day 7. At all days, both models were strongly positive for Ck5, Ck7, and Ck 19, and weakly positive for Ck10. Gingival epithelial cells stratify successfully on semi-permeable nitrocellulose membranes, supported with a semi-solid growth medium. This technique allows researchers to construct uniform gingival epithelial cell multilayers at an air-liquid-solid interface, without using collagen gels, resulting in a more reproducible method.
  • Christensen, Jon; El-Gebali, Sara; Natoli, Manuela; Sengstag, Thierry; Delorenzi, Mauro; Bentz, Susanne; Bouzourene, Hanifa; Rumbo, Martin; Felsani, Armando; Siissalo, Sanna; Hirvonen, Jouni; Vila, Maya R.; Saletti, Piercarlo; Aguet, Michel; Anderle, Pascale (2012)
  • Tsai, Feng-Ching; Bertin, Aurelie; Bousquet, Hugo; Manzi, John; Senju, Yosuke; Tsai, Meng-Chen; Picas, Laura; Miserey-Lenkei, Stephanie; Lappalainen, Pekka; Lemichez, Emmanuel; Coudrier, Evelyne; Bassereau, Patricia (2018)
    One challenge in cell biology is to decipher the biophysical mechanisms governing protein enrichment on curved membranes and the resulting membrane deformation. The ERM protein ezrin is abundant and associated with cellular membranes that are flat, positively or negatively curved. Using in vitro and cell biology approaches, we assess mechanisms of ezrin's enrichment on curved membranes. We evidence that wild-type ezrin (ezrinWT) and its phosphomimetic mutant T567D (ezrinTD) do not deform membranes but self-assemble antiparallelly, zipping adjacent membranes. EzrinTD's specific conformation reduces intermolecular interactions, allows binding to actin filaments, which reduces membrane tethering, and promotes ezrin binding to positively-curved membranes. While neither ezrinTD nor ezrinWT senses negative curvature alone, we demonstrate that interacting with curvature-sensing I-BAR-domain proteins facilitates ezrin enrichment in negatively-curved membrane protrusions. Overall, our work demonstrates that ezrin can tether membranes, or be targeted to curved membranes, depending on conformations and interactions with actin and curvature-sensing binding partners.
  • O'Keefe, Stephen J. D.; Li, Jia V.; Lahti, Leo; Ou, Junhai; Carbonero, Franck; Mohammed, Khaled; Posma, Joram M.; Kinross, James; Wahl, Elaine; Ruder, Elizabeth; Vipperla, Kishore; Naidoo, Vasudevan; Mtshali, Lungile; Tims, Sebastian; Puylaert, Philippe G. B.; DeLany, James; Krasinskas, Alyssa; Benefiel, Ann C.; Kaseb, Hatem O.; Newton, Keith; Nicholson, Jeremy K.; de Vos, Willem M.; Gaskins, H. Rex; Zoetendal, Erwin G. (2015)
    Rates of colon cancer are much higher in African Americans (65: 100,000) than in rural South Africans (
  • Lawrenson, Kate; Kar, Siddhartha; McCue, Karen; Kuchenbaeker, Karoline; Michailidou, Kyriaki; Tyrer, Jonathan; Beesley, Jonathan; Ramus, Susan J.; Li, Qiyuan; Delgado, Melissa K.; Lee, Janet M.; Aittomäki, Kristiina; Andrulis, Irene L.; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K.; Arver, Brita; Bandera, Elisa V.; Barile, Monica; Barkardottir, Rosa B.; Barrowdale, Daniel; Beckmann, Matthias W.; Benitez, Javier; Berchuck, Andrew; Bisogna, Maria; Bjorge, Line; Blomqvist, Carl; Blot, William; Bogdanova, Natalia; Bojesen, Anders; Bojesen, Stig E.; Bolla, Manjeet K.; Bonanni, Bernardo; Borresen-Dale, Anne-Lise; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Bruinsma, Fiona; Brunet, Joan; Buhari, Shaik Ahmad; Burwinkel, Barbara; Butzow, Ralf; Buys, Saundra S.; Cai, Qiuyin; Caldes, Trinidad; Campbell, Ian; Canniotto, Rikki; Chang-Claude, Jenny; Khan, Sofia; Nevanlinna, Heli; GEMO Study Collaborators; EMBRACE; Hereditary Breast & Ovarian Canc R; KConFab Investigators; Australian Ovarian Canc Study Grp (2016)
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P = 9.2 x 10(-20)), ER-negative BC (P = 1.1 x 10(-13)), BRCA1-associated BC (P = 7.7 x 10(-16)) and triple negative BC (P-diff = 2 x 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P = 2 x 10(-3)) and ABHD8 (P
  • Tuohimaa, Pentti; Wang, Jing-Huan; Khan, Sofia; Kuuslahti, Marianne; Qian, Kui; Manninen, Tommi; Auvinen, Petri; Vihinen, Mauno; Lou, Yan-Ru (2013)
    1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1−/−), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1−/−. By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment.
  • Liu, Mengling; Rogers, Linda; Cheng, Qinyi; Shao, Yongzhao; Fernandez-Beros, Maria Elena; Hirschhorn, Joel N.; Lyon, Helen N.; Gajdos, Zofia K. Z.; Vedantam, Sailaja; Gregersen, Peter; Seldin, Michael F.; Bleck, Bertram; Ramasamy, Adaikalavan; Hartikainen, Anna-Liisa; Jarvelin, Marjo-Riitta; Kuokkanen, Mikko; Laitinen, Tarja; Eriksson, Johan; Lehtimaki, Terho; Raitakari, Olli T.; Reibman, Joan (2011)
  • Hongisto, Vesa; Jernstrom, Sandra; Fey, Vidal; Mpindi, John-Patrick; Sahlberg, Kristine Kleivi; Kallioniemi, Olli; Perala, Merja (2013)
  • Syed, Mansoor; Das, Pragnya; Pawar, Aishwarya; Aghai, Zubair H.; Kaskinen, Anu; Zhuang, Zhen W.; Ambalavanan, Namasivayam; Pryhuber, Gloria; Andersson, Sture; Bhandari, Vineet (2017)
    Hyperoxia-induced acute lung injury (HALI) is a key contributor to the pathogenesis of bronchopulmonary dysplasia (BPD) in neonates, for which no specific preventive or therapeutic agent is available. Here we show that lung micro-RNA (miR)-34a levels are significantly increased in lungs of neonatal mice exposed to hyperoxia. Deletion or inhibition of miR-34a improves the pulmonary phenotype and BPD-associated pulmonary arterial hypertension (PAH) in BPD mouse models, which, conversely, is worsened by miR-34a overexpression. Administration of angiopoietin-1, which is one of the downstream targets of miR34a, is able to ameliorate the BPD pulmonary and PAH phenotypes. Using three independent cohorts of human samples, we show that miR-34a expression is increased in type 2 alveolar epithelial cells in neonates with respiratory distress syndrome and BPD. Our data suggest that pharmacologic miR-34a inhibition may be a therapeutic option to prevent or ameliorate HALI/BPD in neonates.
  • Soderholm, Sandra; Anastasina, Maria; Islam, Mohammad Majharul; Tynell, Janne; Poranen, Minna M.; Bamford, Dennis H.; Stenman, Jakob; Julkunen, Ilkka; Sauliene, Ingrida; De Brabander, Jef K.; Matikainen, Sampsa; Nyman, Tuula A.; Saelens, Xavier; Kainov, Denis (2016)
    Influenza A viruses (IAVs) impact the public health and global economy by causing yearly epidemics and occasional pandemics. Several anti-IAV drugs are available and many are in development. However, the question remains which of these antiviral agents may allow activation of immune responses and protect patients against co- and re-infections. To answer to this question, we analysed immuno-modulating properties of the antivirals saliphenylhalamide (SaliPhe), SNS-032, obatoclax, and gemcitabine, and found that only gemcitabine did not impair immune responses in infected cells. It also allowed activation of innate immune responses in lipopolysaccharide (LPS)- and interferon alpha (IFN alpha)-stimulated macrophages. Moreover, immuno-mediators produced by gemcitabine-treated IAV-infected macrophages were able to prime immune responses in non-infected cells. Thus, we identified an antiviral agent which might be beneficial for treatment of patients with severe viral infections. (C) 2015 The Authors. Published by Elsevier B.V.
  • Anastasina, Maria; Le May, Nicolas; Bugai, Andrii; Fu, Yu; Soderholm, Sandra; Gaelings, Lana; Ohman, Tiina; Tynell, Janne; Kyttanen, Suvi; Barboric, Matjaz; Nyman, Tuula A.; Matikainen, Sampsa; Julkunen, Ilkka; Butcher, Sarah J.; Egly, Jean-Marc; Kainov, Denis E. (2016)
    Influenza NS1 protein is an important virulence factor that is capable of binding double-stranded (ds) RNA and inhibiting dsRNA-mediated host innate immune responses. Here we show that NS1 can also bind cellular dsDNA. This interaction prevents loading of transcriptional machinery to the DNA, thereby attenuating IAV-mediated expression of antiviral genes. Thus, we identified a previously undescribed strategy, by which RNA virus inhibits cellular transcription to escape antiviral response and secure its replication. (C) 2016 Elsevier B.V. All rights reserved.
  • Mogollon, Isabel; Ahtiainen, Laura (2020)
    Embryonic development of ectodermal organs involves a very dynamic range of cellular events and, therefore, requires advanced techniques to visualize them. Ectodermal organogenesis proceeds in well-defined sequential stages mediated by tissue interactions. Different ectodermal organs feature shared morphological characteristics, which are regulated by conserved and reiterative signaling pathways. A wealth of genetic information on the expression patterns and interactions of specific signaling pathways has accumulated over the years. However, the conventional developmental biology methods have mainly relied on two-dimensional tissue histological analyses at fixed time points limiting the possibilities to follow the processes in real time on a single cell resolution. This has complicated the interpretation of cause and effect relationships and mechanisms of the successive events. Whole-mount tissue live imaging approaches are now revealing how reshaping of the epithelial sheet for the initial placodal thickening, budding morphogenesis and beyond, involve coordinated four dimensional changes in cell shapes, well-orchestrated cell movements and specific cell proliferation and apoptosis patterns. It is becoming evident that the interpretation of the reiterative morphogenic signals takes place dynamically at the cellular level. Depending on the context, location, and timing they drive different cell fate choices and cellular interactions regulating a pattern of behaviors that ultimately defines organ shapes and sizes. Here we review how new tissue models, advances in 3D and live tissue imaging techniques have brought new understanding on the cell level behaviors that contribute to the highly dynamic stages of morphogenesis in teeth, hair and related ectodermal organs during development, and in dysplasia contexts.
  • Kooter, Ingeborg; Ilves, Marit; Grollers-Mulderij, Mariska; Duistermaat, Evert; Tromp, Peter C.; Kuper, Frieke; Kinaret, Pia; Savolainen, Kai; Greco, Dario; Karisola, Piia; Ndika, Joseph; Alenius, Harri (2019)
    More than 5% of any population suffers from asthma, and there are indications that these individuals are more sensitive to nanoparticle aerosols than the healthy population. We used an air-liquid interface model of inhalation exposure to investigate global transcriptomic responses in reconstituted three-dimensional airway epithelia of healthy and asthmatic subjects exposed to pristine (nCuO) and carboxylated (nCuO(COOH)) copper oxide nanoparticle aerosols. A dose-dependent increase in cytotoxicity (highest in asthmatic donor cells) and pro-inflammatory signaling within 24 h confirmed the reliability and sensitivity of the system to detect acute inhalation toxicity. Gene expression changes between nanoparticle-exposed versus air-exposed cells were investigated. Hierarchical clustering based on the expression profiles of all differentially expressed genes (DEGs), cell-death-associated DEGs (567 genes), or a subset of 48 highly overlapping DEGs categorized all samples according to "exposure severity", wherein nanoparticle surface chemistry and asthma are incorporated into the dose-response axis. For example, asthmatics exposed to low and medium dose nCuO clustered with healthy donor cells exposed to medium and high dose nCuO, respectively. Of note, a set of genes with high relevance to mucociliary clearance were observed to distinctly differentiate asthmatic and healthy donor cells. These genes also responded differently to nCuO and nCuO(COOH) nanoparticles. Additionally, because response to transition-metal nanoparticles was a highly enriched Gene Ontology term (FDR 8 X 10(-13)) from the subset of 48 highly overlapping DEGs, these genes may represent biomarkers to a potentially large variety of metal/metal oxide nanoparticles.
  • He, Yinghong; Maier, Kristin; Leppert, Juna; Hausser, Ingrid; Schwieger-Briel, Agnes; Weibel, Lisa; Theiler, Martin; Kiritsi, Dimitra; Busch, Hauke; Boerries, Melanie; Hannula-Jouppi, Katariina; Heikkilä, Hannele; Tasanen, Kaisa; Castiglia, Daniele; Zambruno, Giovanna; Has, Cristina (2016)
    The genetic basis of epidermolysis bullosa, a group of genetic disorders characterized by the mechanically induced formation of skin blisters, is largely known, but a number of cases still remain genetically unsolved. Here, we used whole-exome and targeted sequencing to identify monoallelic mutations, c.1A>G and c.2T>C, in the translation initiation codon of the gene encoding kelch-like protein 24 (KLHL24) in 14 individuals with a distinct skin-fragility phenotype and skin cleavage within basal keratinocytes. Remarkably, mutation c.1A>G occurred de novo and was recurrent in families originating from different countries. The striking similarities of the clinical features of the affected individuals point to a unique and very specific pathomechanism. We showed that mutations in the translation initiation codon of KLHL24 lead to the usage of a downstreamtranslation initiation site with the same reading frame and formation of a truncated polypeptide. The pathobiology was examined in keratinocytes and fibroblasts of the affected individuals and via expression of mutant KLHL24, and we found mutant KLHL24 to be associated with abnormalities of intermediate filaments in keratinocytes and fibroblasts. In particular, KLHL24 mutations were associated with irregular and fragmented keratin 14. Recombinant overexpression of normal KLHL24 promoted keratin 14 degradation, whereas mutant KLHL24 showed less activity than the normal molecule. These findings identify KLHL24 mutations as a cause of skin fragility and identify a role for KLHL24 in maintaining the balance between intermediate filament stability and degradation required for skin integrity.
  • Scala, Giovanni; Kinaret, Pia; Marwah, Veer; Sund, Jukka; Fortino, Vittorio; Greco, Dario (2018)
    New strategies to characterize the effects of engineered nanomaterials (ENMs) based on omics technologies are emerging. However, given the intricate interplay of multiple regulatory layers, the study of a single molecular species in exposed biological systems might not allow the needed granularity to successfully identify the pathways of toxicity (PoT) and, hence, portraying adverse outcome pathways (AOPs). Moreover, the intrinsic diversity of different cell types composing the exposed organs and tissues in living organisms poses a problem when transferring in vivo experimentation into cell-based in vitro systems. To overcome these limitations, we have profiled genome-wide DNA methylation, mRNA and microRNA expression in three human cell lines representative of relevant cell types of the respiratory system, A549, BEAS-2B and THP-1, exposed to a low dose of ten carbon nanomaterials (CNMs) for 48 h. We applied advanced data integration and modelling techniques in order to build comprehensive regulatory and functional maps of the CNM effects in each cell type. We observed that different cell types respond differently to the same CNM exposure even at concentrations exerting similar phenotypic effects. Furthermore, we linked patterns of genomic and epigenomic regulation to intrinsic properties of CNM. Interestingly, DNA methylation and microRNA expression only partially explain the mechanism of action (MOA) of CNMs. Taken together, our results strongly support the implementation of approaches based on multi-omics screenings on multiple tissues/cell types, along with systems biology-based multi-variate data modelling, in order to build more accurate AOPs.