Browsing by Subject "ERBB2"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Varga, Zsuzsanna; Lebeau, Annette; Bu, Hong; Hartmann, Arndt; Penault-Llorca, Frederique; Guerini-Rocco, Elena; Schraml, Peter; Symmans, Fraser; Stoehr, Robert; Teng, Xiaodong; Turzynski, Andreas; von Wasielewski, Reinhard; Guertler, Claudia; Laible, Mark; Schlombs, Kornelia; Joensuu, Heikki; Keller, Thomas; Sinn, Peter; Sahin, Ugur; Bartlett, John; Viale, Giuseppe (2017)
    Background: Accurate determination of the predictive markers human epidermal growth factor receptor 2 (HER2/ERBB2), estrogen receptor (ER/ESR1), progesterone receptor (PgR/PGR), and marker of proliferation Ki67 (MKI67) is indispensable for therapeutic decision making in early breast cancer. In this multicenter prospective study, we addressed the issue of inter- and intrasite reproducibility using the recently developed reverse transcription-quantitative real-time polymerase chain reaction-based MammaTyper (R) test. Methods: Ten international pathology institutions participated in this study and determined messenger RNA expression levels of ERBB2, ESR1, PGR, and MKI67 in both centrally and locally extracted RNA from formalin-fixed, paraffin-embedded breast cancer specimens with the MammaTyper (R) test. Samples were measured repeatedly on different days within the local laboratories, and reproducibility was assessed by means of variance component analysis, Fleiss' kappa statistics, and interclass correlation coefficients (ICCs). Results: Total variations in measurements of centrally and locally prepared RNA extracts were comparable; therefore, statistical analyses were performed on the complete dataset. Intersite reproducibility showed total SDs between 0.21 and 0.44 for the quantitative single-marker assessments, resulting in ICC values of 0.980-0.998, demonstrating excellent agreement of quantitative measurements. Also, the reproducibility of binary single-marker results (positive/negative), as well as the molecular subtype agreement, was almost perfect with kappa values ranging from 0.90 to 1.00. Conclusions: On the basis of these data, the MammaTyper (R) has the potential to substantially improve the current standards of breast cancer diagnostics by providing a highly precise and reproducible quantitative assessment of the established breast cancer biomarkers and molecular subtypes in a decentralized workup.
  • Heliste, Juho; Jokilammi, Anne; Paatero, Ilkka; Chakroborty, Deepankar; Stark, Christoffer; Savunen, Timo; Laaksonen, Maria; Elenius, Klaus (2018)
    BackgroundReceptor tyrosine kinases (RTK) are potential targets for the treatment of ischemic heart disease. The human RTK family consists of 55 members, most of which have not yet been characterized for expression or activity in the ischemic heart.MethodsRTK gene expression was analyzed from human heart samples representing healthy tissue, acute myocardial infarction or ischemic cardiomyopathy. As an experimental model, pig heart with ischemia-reperfusion injury, caused by cardiopulmonary bypass,was used, from which phosphorylation status of RTKs was assessed with a phospho-RTK array. Expression and function of one RTK, ROR1, was further validated in pig tissue samples, and in HL-1 cardiomyocytes and H9c2 cardiomyoblasts, exposed to hypoxia and reoxygenation. ROR1 protein level was analyzed by Western blotting. Cell viability after ROR1 siRNA knockdown or activation with Wnt-5a ligand was assessed by MTT assays.ResultsIn addition to previously characterized RTKs, a group of novel active and regulated RTKs was detected in the ischemic heart. ROR1 was the most significantly upregulated RTK in human ischemic cardiomyopathy. However, ROR1 phosphorylation was suppressed in the pig model of ischemia-reperfusion and ROR1 phosphorylation and expression were down-regulated in HL-1 cardiomyocytes subjected to short-term hypoxia in vitro. ROR1 expression in the pig heart was confirmed on protein and mRNA level. Functionally, ROR1 activity was associated with reduced viability of HL-1 cardiomyocytes in both normoxia and during hypoxia-reoxygenation.ConclusionsSeveral novel RTKs were found to be regulated in expression or activity in ischemic heart. ROR1 was one of the most significantly regulated RTKs. The in vitro findings suggest a role for ROR1 as a potential target for the treatment of ischemic heart injury.
  • Pietilä, Mika; Sahgal, Pranshu; Peuhu, Emilia; Jäntti, Niklas Z.; Paatero, Ilkka; Närvä, Elisa; Al-Akhrass, Hussein; Lilja, Johanna; Georgiadou, Maria; Andersen, Olav M.; Padzik, Artur; Sihto, Harri; Joensuu, Heikki; Blomqvist, Matias; Saarinen, Irena; Boström, Peter J.; Taimen, Pekka; Ivaska, Johanna (2019)
    The human epidermal growth factor receptor 2 (HER2) is an oncogene targeted by several kinase inhibitors and therapeutic antibodies. While the endosomal trafficking of many other receptor tyrosine kinases is known to regulate their oncogenic signalling, the prevailing view on HER2 is that this receptor is predominantly retained on the cell surface. Here, we find that sortilin-related receptor 1 (SORLA; SORL1) co-precipitates with HER2 in cancer cells and regulates HER2 subcellular distribution by promoting recycling of the endosomal receptor back to the plasma membrane. SORLA protein levels in cancer cell lines and bladder cancers correlates with HER2 levels. Depletion of SORLA triggers HER2 targeting to late endosomal/lysosomal compartments and impairs HER2-driven signalling and in vivo tumour growth. SORLA silencing also disrupts normal lysosome function and sensitizes anti-HER2 therapy sensitive and resistant cancer cells to lysosome-targeting cationic amphiphilic drugs. These findings reveal potentially important SORLA-dependent endosomal trafficking-linked vulnerabilities in HER2-driven cancers.