Browsing by Subject "ETHYLENE"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Eskola, Arkke J.; Döntgen, Malte; Rotavera, Brandon; Caravan, Rebecca L.; Welz, Oliver; Savee, John D.; Osborn, David L.; Shallcross, Dudley E.; Percival, Carl J.; Taatjes, Craig A. (2018)
    Methyl vinyl ketone (MVK) and methacrolein (MACR) are important intermediate products in atmospheric degradation of volatile organic compounds, especially of isoprene. This work investigates the reactions of the smallest Criegee intermediate, CH2OO, with its co-products from isoprene ozonolysis, MVK and MACR, using multiplexed photoionization mass spectrometry (MPIMS), with either tunable synchrotron radiation from the Advanced Light Source or Lyman-alpha (10.2 eV) radiation for photoionization. CH2OO was produced via pulsed laser photolysis of CH(2)l(2) in the presence of excess O-2. Time-resolved measurements of reactant disappearance and of product formation were performed to monitor reaction progress; first order rate coefficients were obtained from exponential fits to the CH2OO decays. The bimolecular reaction rate coefficients at 300 K and 4 Torr are k(CH2OO + MVK) = (5.0 +/- 0.4) x 10(-13) cm(3) s(-1) and k(CH2OO + MACR) = (4.4 +/- 1.0) x 10(-13) cm(3) s(-1), where the stated +/- 2 sigma uncertainties are statistical uncertainties. Adduct formation is observed for both reactions and is attributed to the formation of a secondary ozonides (1,2,4-trioxolanes), supported by master equation calculations of the kinetics and the agreement between measured and calculated adiabatic ionization energies. Kinetics measurements were also performed for a possible bimolecular CH2OO + CO reaction and for the reaction of CH2OO with CF3CHCH2 at 300 K and 4 Torr. For CH2OO + CO, no reaction is observed and an upper limit is determined: k(CH2OO + CO) <2 x 10(-16) cm(3) s(-1). For CH2OO + CF3CHCH2, an upper limit of k(CH2OO + CF3CHCH2) <2 x 10(-14) cm(3) s(-1) is obtained.
  • Vuorinen, Katariina; Zamora, Olena; Vaahtera, Lauri; Overmyer, Kirk; Brosché, Mikael (2021)
    Plants require interaction between signaling pathways to differentiate and integrate stress responses and deploy appropriate defenses. The hormones ethylene, salicylic acid (SA), and jasmonic acid (JA) are important regulators of plant defenses. Numerous interactions between these signaling pathways are the cornerstone of robust plant immunity. Additionally, during the early response to pathogens, reactive oxygen species (ROS) act as signaling molecules. Here, we examined the extent of signal interaction in the early stages of Botrytis cinerea infection. To enable a comparison between B. cinerea infection with ROS signaling, we subjected plants to ozone treatment, which stimulates an apoplastic ROS burst. We used a collection of single, double, and triple signaling mutants defective in hormone signaling and biosynthesis and subjected them to B. cinerea infection and ozone treatment at different timepoints. We examined lesion size, cell death, and gene expression (both quantitatively and spatially). The two treatments shared many similarities, especially in JA-insensitive mutants, which were sensitive to both treatments. Unexpectedly, a B. cinerea- susceptible JA-insensitive mutant (coil), became tolerant when both SA biosynthesis and signaling was impaired (coil npr1 sid2), demonstrating that JA responses may be under the control of SA. Extensive marker gene analysis indicated JA as the main regulator of both B. cinerea and ozone defenses. In addition, we identified the transcription factor SRI_ as a crucial regulator of PLANT DEFENSIN expression and cell-death regulation, which contributes to resistance to B. cinerea. Overall, our work further defines the context of ROS in plant defense signaling.
  • Seyfferth, Carolin; Wessels, Bernard A.; Vahala, Jorma; Kangasjarvi, Jaakko; Delhomme, Nicolas; Hvidsten, Torgeir R.; Tuominen, Hannele; Lundberg-Felten, Judith (2021)
    Secondary growth relies on precise and specialized transcriptional networks that determine cell division, differentiation, and maturation of xylem cells. We identified a novel role for the ethylene-induced Populus Ethylene Response Factor PtERF85 (Potri.015G023200) in balancing xylem cell expansion and secondary cell wall (SCW) formation in hybrid aspen (Populus tremula x tremuloides). Expression of PtERF85 is high in phloem and cambium cells and during the expansion of xylem cells, while it is low in maturing xylem tissue. Extending PtERF85 expression into SCW forming zones of woody tissues through ectopic expression reduced wood density and SCW thickness of xylem fibers but increased fiber diameter. Xylem transcriptomes from the transgenic trees revealed transcriptional induction of genes involved in cell expansion, translation, and growth. The expression of genes associated with plant vascular development and the biosynthesis of SCW chemical components such as xylan and lignin, was down-regulated in the transgenic trees. Our results suggest that PtERF85 activates genes related to xylem cell expansion, while preventing transcriptional activation of genes related to SCW formation. The importance of precise spatial expression of PtERF85 during wood development together with the observed phenotypes in response to ectopic PtERF85 expression suggests that PtERF85 contributes to the transition of fiber cells from elongation to secondary cell wall deposition.