Browsing by Subject "EUTROPHIC LAKES"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Poikane, Sandra; Birk, Sebastian; Boehmer, Juergen; Carvalho, Laurence; de Hoyos, Caridad; Gassner, Hubert; Hellsten, Seppo; Kelly, Martyn; Solheim, Anne Lyche; Olin, Mikko; Pall, Karin; Phillips, Geoff; Portielje, Rob; Ritterbusch, David; Sandin, Leonard; Schartau, Ann-Kristin; Solimini, Angelo G.; van den Berg, Marcel; Wolfram, Georg; van de Bund, Wouter (2015)
    The Water Framework Directive is the first international legislation to require European countries to establish comparable ecological assessment schemes for their freshwaters. A key element in harmonising quality classification within and between Europe's river basins is an "Intercalibration" exercise, stipulated by the WFD, to ensure that the good status boundaries in all of the biological assessment methods correspond to similar levels of anthropogenic pressure. In this article, we provide a comprehensive overview of this international comparison, focusing on the assessment schemes developed for freshwater lakes. Out of 82 lake ecological assessment methods reported for the comparison, 62 were successfully intercalibrated and included in the EC Decision on intercalibration, with a high proportion of phytoplankton (18), macrophyte (17) and benthic fauna (13) assessment methods. All the lake assessment methods are reviewed in this article, including the results of intercalibration. Furthermore, the current gaps and way forward to reach consistent management objectives for European lakes are discussed. (C) 2015 The Authors. Published by Elsevier Ltd.
  • Tammeorg, Olga; Haldna, Marina; Noges, Peeter; Appleby, Peter; Mols, Tonu; Niemisto, Juha; Tammeorg, Priit; Horppila, Jukka (2018)
    Phosphorus retention (TPacc) is one of the major water quality regulators in lakes. The current study aimed at ascertaining the specific lake characteristics regulating TPacc. Moreover, we were interested whether NAO (North Atlantic Oscillation), a proxy of climatic forcing, can explain variability in TPacc, additionally to that ascribed to lake characteristics. Sediment cores were obtained from 21 Finnish lakes, subject to radiometric dating and measurements of TP concentrations. Principal components (PCs) were generated using lake characteristics that are usually included into the modelling of TPacc (e.g. lake area, lake depth, catchment area, P inflow) but also the parameters that the classical models usually missed (e.g. anoxic factor). We used significant principal components (PCs), specific combinations of lake characteristics and monthly NAO values as predictors of TPacc. Lake characteristics explained the bulk of TPacc variability. The most influential factors (positive drivers) behind TPacc included PC1 (representing mainly deep lakes), PC2 (small lakes with high levels of anoxia and water column stability), PC3 (productive lakes with large catchment area and short water residence time), PC4 (lakes with high water column stability, low anoxic factor and relatively high sediment focusing) and PC5 (lakes with high levels of P inflow, anoxia and long water residence time). Additionally, we found a potential negative effect of NAO in October on the annual TPacc. This NAO was significantly positively related to temperatures in surface and near-bottom water layer (also their difference) in autumn, suggesting the possible implications for the internal P dynamics. Increased mineralization of organic matter is the most likely explanation for the reduced TPacc associated with NAO-driven water temperature increase. The analysis presented here contributes to the knowledge of the factors controlling P retention. Moreover, this spatially and temporally comprehensive sediment data can potentially be a valuable source for modelling climate change implications.
  • Ruuhijärvi, Jukka; Malinen, Tommi; Kuoppamäki, Kirsi; Ala-Opas, Pasi; Vinni, Mika (2020)
    We studied the responses of a food web, especially fish and zooplankton, to summertime aeration, pumping of oxygen-rich epilimnetic water to the hypolimnion in Lake Vesijärvi, southern Finland. The aim of hypolimnetic aeration was to reduce internal loading of phosphorus from sediment. The population of smelt (Osmerus eperlanus L.), the main planktivore of the pelagial area, collapsed during the two 1st years of aeration due to increased temperature and low oxygen concentrations in the hypolimnion. The population recovered after the 4th year of hypolimnetic aeration, when oxygen conditions were improved. Despite elevated hypolimnetic temperature, smelt reached exceptionally high abundance, which led to a significant reduction in cladoceran body size. The density of perch (Perca fluviatilis L.) increased at first, but then decreased when the proportion of smelt and cyprinids increased. Biomasses of Daphnia decreased probably as a result of the disappearance of dark, low-oxygen deep-water refuge against fish predation and low availability of nutritionally high-quality algae. Occasionally filamentous cyanobacteria, such as turbulence tolerant Planktothrix agardhii (Gomont), were abundant, suggesting deteriorated food resources for zooplankton. The responses of food web were controversial with respect to the aim of the management, which was to prevent the occurrence of harmful algal blooms.