Browsing by Subject "EXCITABILITY"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • Piispanen, Wilhelm W.; Lundell, Richard V.; Tuominen, Laura J.; Räisänen-Sokolowski, Anne K. (2021)
    Introduction: Cold water imposes many risks to the diver. These risks include decompression illness, physical and cognitive impairment, and hypothermia. Cognitive impairment can be estimated using a critical flicker fusion frequency (CFFF) test, but this method has only been used in a few studies conducted in an open water environment. We studied the effect of the cold and a helium-containing mixed breathing gas on the cognition of closed circuit rebreather (CCR) divers. Materials and Methods: Twenty-three divers performed an identical dive with controlled trimix gas with a CCR device in an ice-covered quarry. They assessed their thermal comfort at four time points during the dive. In addition, their skin temperature was measured at 5-min intervals throughout the dive. The divers performed the CFFF test before the dive, at target depth, and after the dive. Results: A statistically significant increase of 111.7% in CFFF values was recorded during the dive compared to the pre-dive values (p < 0.0001). The values returned to the baseline after surfacing. There was a significant drop in the divers' skin temperature of 0.48 degrees C every 10 min during the dive (p < 0.001). The divers' subjectively assessed thermal comfort also decreased during the dive (p = 0.01). Conclusion: Our findings showed that neither extreme cold water nor helium-containing mixed breathing gas had any influence on the general CFFF profile described in the previous studies from warmer water and where divers used other breathing gases. We hypothesize that cold-water diving and helium-containing breathing gases do not in these diving conditions cause clinically relevant cerebral impairment. Therefore, we conclude that CCR diving in these conditions is safe from the perspective of alertness and cognitive performance.
  • Tervo, Aino E.; Nieminen, Jaakko O.; Lioumis, Pantelis; Metsomaa, Johanna; Souza, Victor H.; Sinisalo, Heikki; Stenroos, Matti; Sarvas, Jukka; Ilmoniemi, Risto J. (2022)
    Background: Transcranial magnetic stimulation (TMS) is widely used in brain research and treatment of various brain dysfunctions. However, the optimal way to target stimulation and administer TMS therapies, for example, where and in which electric field direction the stimuli should be given, is yet to be determined. Objective: To develop an automated closed-loop system for adjusting TMS parameters (in this work, the stimulus orientation) online based on TMS-evoked brain activity measured with electroencephalography (EEG). Methods: We developed an automated closed-loop TMS-EEG set-up. In this set-up, the stimulus parameters are electronically adjusted with multi-locus TMS. As a proof of concept, we developed an algorithm that automatically optimizes the stimulation orientation based on single-trial EEG responses. We applied the algorithm to determine the electric field orientation that maximizes the amplitude of the TMS-EEG responses. The validation of the algorithm was performed with six healthy volunteers, repeating the search twenty times for each subject. Results: The validation demonstrated that the closed-loop control worked as desired despite the large variation in the single-trial EEG responses. We were often able to get close to the orientation that maximizes the EEG amplitude with only a few tens of pulses. Conclusion: Optimizing stimulation with EEG feedback in a closed-loop manner is feasible and enables effective coupling to brain activity. (C) 2022 The Author(s). Published by Elsevier Inc.
  • Illman, Mia; Laaksonen, Kristina; Liljeström, Mia; Jousmäki, Veikko; Piitulainen, Harri; Forss, Nina (2020)
    Modulation of the ∼20-Hz brain rhythm has been used to evaluate the functional state of the sensorimotor cortex both in healthy subjects and patients, such as stroke patients. The ∼20-Hz brain rhythm can be detected by both magnetoencephalography (MEG) and electroencephalography (EEG), but the comparability of these methods has not been evaluated. Here, we compare these two methods in the evaluating of ∼20-Hz activity modulation to somatosensory stimuli. Rhythmic ∼20-Hz activity during separate tactile and proprioceptive stimulation of the right and left index finger was recorded simultaneously with MEG and EEG in twenty-four healthy participants. Both tactile and proprioceptive stimulus produced a clear suppression at 300–350 ms followed by a subsequent rebound at 700–900 ms after stimulus onset, detected at similar latencies both with MEG and EEG. The relative amplitudes of suppression and rebound correlated strongly between MEG and EEG recordings. However, the relative strength of suppression and rebound in the contralateral hemisphere (with respect to the stimulated hand) was significantly stronger in MEG than in EEG recordings. Our results indicate that MEG recordings produced signals with higher signal-to-noise ratio than EEG, favoring MEG as an optimal tool for studies evaluating sensorimotor cortical functions. However, the strong correlation between MEG and EEG results encourages the use of EEG when translating studies to clinical practice. The clear advantage of EEG is the availability of the method in hospitals and bed-side measurements at the acute phase.
  • Rodionov, Andrei; Savolainen, Sarianna; Kirveskari, Erika; Mäkelä, Jyrki P.; Shulga, Anastasia (2020)
    Recovery of lower-limb function after spinal cord injury (SCI) is dependent on the extent of remaining neural transmission in the corticospinal pathway. The aim of this proof-of-concept pilot study was to explore the effects of long-term paired associative stimulation (PAS) on leg muscle strength and walking in people with SCI. Five individuals with traumatic incomplete chronic tetraplegia (>34 months post-injury, motor incomplete, 3 females, mean age 60 years) with no contraindications to transcranial magnetic stimulation (TMS) received PAS to one or both legs for 2 months (28 sessions in total, 5 times a week for the first 2 weeks and 3 times a week thereafter). The participants were evaluated with the Manual Muscle Test (MMT), AIS motor and sensory examination, Modified Asworth Scale (MAS), and the Spinal Cord Independence Measure (SCIM) prior to the intervention, after 1 and 2 months of PAS, and after a 1-month follow-up. The study was registered at (NCT03459885). During the intervention, MMT scores and AIS motor scores increased significantly (p = 0.014 and p = 0.033, respectively). Improvements were stable in follow-up. AIS sensory scores, MAS, and SCIM were not modified significantly. MMT score prior to intervention was a good predictor of changes in walking speed (Radj2 = 0.962). The results of this proof-of-concept pilot study justify a larger trial on the effect of long-term PAS on leg muscle strength and walking in people with chronic incomplete SCI.
  • Guntinas-Lichius, Orlando; Volk, Gerd Fabian; Olsen, Kerry D.; Mäkitie, Antti A.; Silver, Carl E.; Zafereo, Mark E.; Rinaldo, Alessandra; Randolph, Gregory W.; Simo, Ricard; Shaha, Ashok R.; Vander Poorten, Vincent; Ferlito, Alfio (2020)
    Purpose Facial nerve electrodiagnostics is a well-established and important tool for decision making in patients with facial nerve diseases. Nevertheless, many otorhinolaryngologist-head and neck surgeons do not routinely use facial nerve electrodiagnostics. This may be due to a current lack of agreement on methodology, interpretation, validity, and clinical application. Electrophysiological analyses of the facial nerve and the mimic muscles can assist in diagnosis, assess the lesion severity, and aid in decision making. With acute facial palsy, it is a valuable tool for predicting recovery. Methods This paper presents a guideline prepared by members of the International Head and Neck Scientific Group and of the Multidisciplinary Salivary Gland Society for use in cases of peripheral facial nerve disorders based on a systematic literature search. Results Required equipment, practical implementation, and interpretation of the results of facial nerve electrodiagnostics are presented. Conclusion The aim of this guideline is to inform all involved parties (i.e. otorhinolaryngologist-head and neck surgeons and other medical specialists, therapeutic professionals and the affected persons) and to provide practical recommendations for the diagnostic use of facial nerve electrodiagnostics.
  • Vidakovic, Maja Rogic; Jerkovic, Ana; Juric, Tomislav; Vujovic, Igor; Soda, Josko; Erceg, Nikola; Bubic, Andreja; Schonwald, Marina Zmajevic; Lioumis , Pantelis; Gabelica, Dragan; Dogas, Zoran (2016)
    Transcranial magnetic stimulation studies have so far reported the results of mapping the primary motor cortex (M1) for hand and tongue muscles in stuttering disorder. This study was designed to evaluate the feasibility of repetitive navigated transcranial magnetic stimulation (rTMS) for locating the M1 for laryngeal muscle and premotor cortical area in the caudal opercular part of inferior frontal gyrus, corresponding to Broca's area in stuttering subjects by applying new methodology for mapping these motor speech areas. Sixteen stuttering and eleven control subjects underwent rTMS motor speech mapping using modified patterned rTMS. The subjects performed visual object naming task during rTMS applied to the (a) left M1 for laryngeal muscles for recording corticobulbar motor-evoked potentials (CoMEP) from cricothyroid muscle and (b) left premotor cortical area in the caudal opercular part of inferior frontal gyrus while recording long latency responses (LLR) from cricothyroid muscle. The latency of CoMEP in control subjects was 11.75 +/- A 2.07 ms and CoMEP amplitude was 294.47 +/- A 208.87 A mu V, and in stuttering subjects CoMEP latency was 12.13 +/- A 0.75 ms and 504.64 +/- A 487.93 A mu V CoMEP amplitude. The latency of LLR in control subjects was 52.8 +/- A 8.6 ms and 54.95 +/- A 4.86 in stuttering subjects. No significant differences were found in CoMEP latency, CoMEP amplitude, and LLR latency between stuttering and control-fluent speakers. These results indicate there are probably no differences in stuttering compared to controls in functional anatomy of the pathway used for transmission of information from premotor cortex to the M1 cortices for laryngeal muscle representation and from there via corticobulbar tract to laryngeal muscles.
  • Hautasaari, Pekka; Savic, Andrej M.; Loberg, Otto; Niskanen, Eini; Kaprio, Jaakko; Kujala, Urho M.; Tarkka, Ina M. (2017)
    Associations between long-term physical activity and cortical function and brain structure are poorly known. Our aim was to assess whether brain functional and/or structural modulation associated with long-term physical activity is detectable using a discordant monozygotic male twin pair design. Nine monozygotic male twin pairs were carefully selected for an intrapair difference in their leisure-time physical activity of at least three years duration (mean age 34 +/- 1 years). We registered somatosensory mismatch response (SMMR) in EEG to electrical stimulation of fingers and whole brain MR images. We obtained exercise history and measured physical fitness and body composition. Equivalent electrical dipole sources of SMMR as well as gray matter (GM) voxel counts in regions of interest indicated by source analysis were evaluated. SMMR dipolar source strengths differed between active and inactive twins within twin pairs in postcentral gyrus, medial frontal gyrus and superior temporal gyrus and in anterior cingulate (AC) GM voxel counts differed similarly. Compared to active twins, their inactive twin brothers showed greater dipole strengths in short periods of the deviant-elicited SMMR and larger AC GM voxel counts. Stronger activation in early unattended cortical processing of the deviant sensory signals in inactive co-twins may imply less effective gating of somatosensory information in inactive twins compared to their active brothers. Present findings indicate that already in 30's long-term physical activity pattern is linked with specific brain indices, both in functional and structural domains.
  • Guzman-Lopez, Jessica; Hernandez-Pavon, Julio C.; Lioumis, Pantelis; Mäkelä, Jyrki P.; Silvanto, Juha (2022)
    Objective: The impact of transcranial magnetic stimulation (TMS) has been shown to depend on the initial brain state of the stimulated cortical region. This observation has led to the development of paradigms that aim to enhance the specificity of TMS effects by using visual/luminance adaptation to modulate brain state prior to the application of TMS. However, the neural basis of interactions between TMS and adaptation is unknown. Here, we examined these interactions by using electroencephalography (EEG) to measure the impact of TMS over the visual cortex after luminance adaptation. Methods: Single-pulses of neuronavigated TMS (nTMS) were applied at two different intensities over the left visual cortex after adaptation to either high or low luminance. We then analyzed the effects of adaptation on the global and local cortical excitability. Results: The analysis revealed a significant interaction between the TMS-evoked responses and the adaptation condition. In particular, when nTMS was applied with high intensity, the evoked responses were larger after adaptation to high than low luminance.Conclusion: This result provides the first neural evidence on the interaction between TMS with visual adaptation. Significance: TMS can activate neurons differentially as a function of their adaptation state.(c) 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (
  • Johnson, Michael R.; Behmoaras, Jacques; Bottolo, Leonardo; Krishnan, Michelle L.; Pernhorst, Katharina; Santoscoy, Paola L. Meza; Rossetti, Tiziana; Speed, Doug; Srivastava, Prashant K.; Chadeau-Hyam, Marc; Hajji, Nabil; Dabrowska, Aleksandra; Rotival, Maxime; Razzaghi, Banafsheh; Kovac, Stjepana; Wanisch, Klaus; Grillo, Federico W.; Slaviero, Anna; Langley, Sarah R.; Shkura, Kirill; Roncon, Paolo; De, Tisham; Mattheisen, Manuel; Niehusmann, Pitt; O'Brien, Terence J.; Petrovski, Slave; von Lehe, Marec; Hoffmann, Per; Eriksson, Johan; Coffey, Alison J.; Cichon, Sven; Walker, Matthew; Simonato, Michele; Danis, Benedicte; Mazzuferi, Manuela; Foerch, Patrik; Schoch, Susanne; De Paola, Vincenzo; Kaminski, Rafal M.; Cunliffe, Vincent T.; Becker, Albert J.; Petretto, Enrico (2015)
  • Belosludtseva, Natalia; Pavlik, Lyubov L.; Belosludtsev, Konstantin N.; Saris, Nils-Erik L.; Shigaeva, Maria; Mironova, Galina D. (2022)
    Mitochondria are capable of synchronized oscillations in many variables, but the underlying mechanisms are still unclear. In this study, we demonstrated that rat liver mitochondria, when exposed to a pulse of Sr2+ ions in the presence of valinomycin (a potassium ionophore) and cyclosporin A (a specific inhibitor of the permeability transition pore complex) under hypotonia, showed prolonged oscillations in K+ and Sr2+ fluxes, membrane potential, pH, matrix volume, rates of oxygen consumption and H2O2 formation. The dynamic changes in the rate of H2O2 production were in a reciprocal relationship with the respiration rate and in a direct relationship with the mitochondrial membrane potential and other indicators studied. The pre-incubation of mitochondria with Ca2+(Sr2+)-dependent phospholipase A(2) inhibitors considerably suppressed the accumulation of free fatty acids, including palmitic and stearic acids, and all spontaneous Sr2+-induced cyclic changes. These data suggest that the mechanism of ion efflux from mitochondria is related to the opening of short-living pores, which can be caused by the formation of complexes between Sr2+(Ca2+) and endogenous long-chain saturated fatty acids (mainly, palmitic acid) that accumulate due to the activation of phospholipase A(2) by the ions. A possible role for transient palmitate/Ca2+(Sr2+)-induced pores in the maintenance of ion homeostasis and the prevention of calcium overload in mitochondria under pathophysiological conditions is discussed.