Browsing by Subject "EXECUTIVE FUNCTIONS"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnove; Vuontela, Virve; Salonen, Oili; Alho, Kimmo (2015)
  • Törmänen, Minna; Roebers, Claudia M. (2018)
    This longitudinal study investigates the differences in cognitive and socio-emotional development and academic achievement between children educated in special education classes (N = 37) and regular classes (N = 37). The study is retrospective. The first measurement point was while children were attending play-oriented kindergarten and no decision about their education had yet been made. The second measurement point followed after 2 years of schooling. Comparing carefully matched groups, no differences in executive functions (EFs) were found before beginning school. Children assigned to special education had poorer language, fine motor skills and a lower pre-academic self-concept, self-regulatory skills and social integration. Notably, every fourth child in special education was an immigrant, 9% of whom later attended regular classes. After 2 years of schooling in either setting, the groups differed significantly in academic achievement, EFs, fine motor skills and cognitive self-regulatory skills. However, it was not - as school officials had intended - that children in special education classes had caught up, except in regard to their academic self-concept and social integration.
  • Putkinen, Vesa; Saarikivi, Katri; Chan, Tsz Man Vanessa; Tervaniemi, Mari (2021)
    Previous work suggests that musical training in childhood is associated with enhanced executive functions. However, it is unknown whether this advantage extends to selective attention-another central aspect of executive control. We recorded a well-established event-related potential (ERP) marker of distraction, the P3a, during an audio-visual task to investigate the maturation of selective attention in musically trained children and adolescents aged 10-17 years and a control group of untrained peers. The task required categorization of visual stimuli, while a sequence of standard sounds and distracting novel sounds were presented in the background. The music group outperformed the control group in the categorization task and the younger children in the music group showed a smaller P3a to the distracting novel sounds than their peers in the control group. Also, a negative response elicited by the novel sounds in the N1/MMN time range (similar to 150-200 ms) was smaller in the music group. These results indicate that the music group was less easily distracted by the task-irrelevant sound stimulation and gated the neural processing of the novel sounds more efficiently than the control group. Furthermore, we replicated our previous finding that, relative to the control group, the musically trained children and adolescents performed faster in standardized tests for inhibition and set shifting. These results provide novel converging behavioral and electrophysiological evidence from a cross-modal paradigm for accelerated maturation of selective attention in musically trained children and adolescents and corroborate the association between musical training and enhanced inhibition and set shifting.
  • Jiang, Ping; Vuontela, Virve; Tokariev, Maksym; Lin, Hai; Aronen, Eeva T.; Ma, YuanYe; Carlson, Synnöve (2018)
    Earlier studies on adults have shown that functional connectivity (FC) of brain networks can vary depending on the brain state and cognitive challenge. Network connectivity has been investigated quite extensively in children in resting state, much less during tasks and is largely unexplored between these brain states. Here we used functional magnetic resonance imaging and independent component analysis to investigate the functional architecture of large-scale brain networks in 16 children (aged 7-11 years, 11 males) and 16 young adults (aged 22-29 years, 10 males) during resting state and visual working memory tasks. We identified the major neurocognitive intrinsic connectivity networks (ICNs) in both groups. Children had stronger FC than adults within the cingulo-opercular network in resting state, during task performance, and after controlling for performance differences. During tasks, children had stronger FC than adults also within the default mode (DMN) and right frontoparietal (rFPN) networks, and between the anterior DMN and the frontopolar network, whereas adults had stronger coupling between the anterior DMN and rFPN. Furthermore, children compared to adults modulated the FC strength regarding the rFPN differently between the brain states. The FC within the anterior DMN correlated with age and performance in children so that the younger they were, the stronger was the FC, and the stronger the FC within this network, the slower they performed the tasks. The group differences in the network connectivity reported here, and the observed correlations with task performance, provide insight into the normative development of the preadolescent brain and link maturation of functional connectivity with improving cognitive performance.
  • Linnavalli, Tanja; Putkinen, Vesa; Lipsanen, Jari; Huotilainen, Minna; Tervaniemi, Mari (2018)
    Several studies have suggested that intensive musical training enhances children’s linguistic skills. Such training, however, is not available to all children. We studied in a community setting whether a low-cost, weekly music playschool provided to 5–6-year-old children in kindergartens could already affect their linguistic abilities. Children (N = 66) were tested four times over two school-years with Phoneme processing and Vocabulary subtests, along with tests for Perceptual reasoning skills and Inhibitory control. We compared the development of music playschool children to their peers either attending to similarly organized dance lessons or not attending to either activity. Music playschool significantly improved the development of children’s phoneme processing and vocabulary skills. No such improvements on children’s scores for non-verbal reasoning and inhibition were obtained. Our data suggest that even playful group music activities – if attended to for several years – have a positive effect on pre-schoolers’ linguistic skills. Therefore we promote the concept of implementing regular music playschool lessons given by professional teachers in early childhood education.
  • Sakai, Hiroyuki; Uchiyama, Yuji; Shin, Duk; Hayashi, Masamichi J.; Sadato, Norihiro (2013)
  • Pihlaja, Mia; Failla, Laura; Peräkylä, Jari; Hartikainen, Kaisa M. (2020)
    We have previously shown invasive vagus nerve stimulation to improve attention and working memory and alter emotion-attention interaction in patients with refractory epilepsy, suggesting that VNS might be useful in the treatment of cognitive impairment. The current research focuses on whether non-invasive, transcutaneous vagus nerve stimulation (tVNS) has similar effects to VNS. Furthermore, we aimed to assess whether tVNS has an impact on cognitive control in general or on underlying brain physiology in a task that mimics everyday life demands where multiple executive functions are engaged while encountering intervening emotional stimuli. Event-related potentials (ERP) evoked in such a task, specifically centro-parietal P3 and frontal N2 were used as biomarkers for attention allocation and cognitive control required to carry out the task. A single-blinded, sham-controlled, within-subject study on healthy subjects (n = 25) was conducted using Executive Reaction Time Test (RT-test), a Go/NoGo task engaging multiple executive functions along with intervening threat-related distractors while EEG was recorded. tVNS at the left tragus and sham stimulation at the left ear lobe was alternately delivered throughout the task. To assess the impact of tVNS on neural activity underlying attention and cognitive control, centro-parietal P3 and frontal N2 peak amplitudes were measured in Go and NoGo conditions. Task performance was assessed with RTs and different error types reflecting cognitive control in general and distinct executive functions, such as working memory and response inhibition.No significant effects due to tVNS on performance in the Executive RT-test were observed. For N2 there was a main effect of stimulator status and a significant interaction of trial type (Go, NoGo) and stimulator status. Post hoc analysis revealed that tVNS resulted in a significant reduction of frontal N2 only in the NoGo condition. No significant effects were observed for P3 nor were there any effects of emotion. Diminished NoGo-N2 potential along with unaltered task performance during tVNS suggests fewer cognitive control resources were required to successfully withhold a prepotent response. Though caution is warranted, we suggest that tVNS may lead to more efficient neural processing with fewer resources needed for successful cognitive control, providing promise for its potential use in cognitive enhancement.