Sort by: Order: Results:

Now showing items 1-3 of 3
  • Wang, Linping; Pogue, Sylvain; Laamanen, Karoliina; Saarela, Jani; Poso, Antti; Laitinen, Tuomo; Valkonen, Jari P. T. (2021)
    Sweet potato virus disease (SPVD), caused by synergistic infection of Sweet potato chlorotic stunt virus (SPCSV) and Sweet potato feathery mottle virus (SPFMV), is responsible for substantial yield losses all over the world. However, there are currently no approved treatments for this severe disease. The crucial role played by RNase III of SPCSV (CSR3) as an RNA silencing suppressor during the viruses' synergistic interaction in sweetpotato makes it an ideal drug target for developing antiviral treatment. In this study, high-throughput screening (HTS) of small molecular libraries targeting CSR3 was initiated by a virtual screen using Glide docking, allowing the selection of 6,400 compounds out of 136,353. We subsequently developed and carried out kinetic-based HTS using fluorescence resonance energy transfer technology, which isolated 112 compounds. These compounds were validated with dose-response assays including kinetic-based HTS and binding affinity assays using surface plasmon resonance and microscale thermophoresis. Finally, the interference of the selected compounds with viral accumulation was verified in planta. In summary, we identified five compounds belonging to two structural classes that inhibited CSR3 activity and reduced viral accumulation in plants. These results provide the foundation for developing antiviral agents targeting CSR3 to provide new strategies for controlling sweetpotato virus diseases. IMPORTANCE We report here a high-throughput inhibitor identification method that targets a severe sweetpotato virus disease caused by coinfection with two viruses (SPCSV and SPFMV). The disease is responsible for up to 90% yield losses. Specifically, we targeted the RNase III enzyme encoded by SPCSV, which plays an important role in suppressing the RNA silencing defense system of sweetpotato plants. Based on virtual screening, laboratory assays, and confirmation in planta, we identified five compounds that could be used to develop antiviral drugs to combat the most severe sweetpotato virus disease.
  • Jokinen, Kari; Salovaara, Anna-Kaisa Johanna; Wasonga, Daniel; Edelmann, Minnamari; Simpura, Ilkka; Mäkelä, Pirjo (2022)
    Leafy vegetables like lettuce (Lactuca sativa L.) naturally have high nitrate content and the European Commission has set maximum level for nitrate in lettuce. Glycinebetaine is an organic osmolyte alleviating plant stress, but its role in leaf nitrate accumulation remains unknown. The uptake of glycinebetaine by lettuce roots, and its potential to regulate lettuce nitrate content and improve plant quality were investigated. Two hydroponic lettuce experiments were conducted with different glycinebetaine application rates (Exp1 : 0, 1, 7.5, and 15 mM; Exp2: 0, 1 + 1 + 1, 1 + 10, and 4 mM). Plants were analyzed at varying time points. Root application resulted in glycinebetaine uptake and translocation to the leaves. Glycinebetaine concentrations > 7.5 mM reduced leaf nitrate up to 40% and increased leaf dry matter content. Glycinebetaine showed a positive effect on leaf mineral and amino acid composition. Thus, glycinebetaine could be a novel strategy to reduce the nitrate content in hydroponic lettuce.
  • Ijaz, Usman; Adhikari, Kedar N.; Stoddard, Frederick L.; Trethowan, Richard M. (2018)
    Faba bean (Vicia faba L.) is an important grain legume used as food and feed. Its production is threatened by abiotic stresses and diseases, of which rust (Uromyces viciae-fabae) is one of the major diseases in East and North Africa, China and the northern grain growing region of Australia. Understanding the genetic and physiological mechanisms of rust resistance in faba bean is in an early phase. The presence of seedling and adult plant resistance genes has been observed. The resistance most frequently utilised in applied plant breeding is race-specific, where the interaction between resistance genes in the host and avirulence genes in the pathogen confers resistance. The main drawback of using race-specific resistance is lack of durability, when deployed singly. Slow rusting or partial resistance, controlled by multiple genes of small effect, is generally non-race specific, so it can be more durable. We present the current knowledge of host resistance and pathogen diversity and propose rational breeding approaches aided with molecular markers to breed durable rust resistance in faba bean.