Browsing by Subject "EXON"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Villaseñor-Altamirano, Ana B.; Watson, John D.; Prokopec, Stephenie D.; Yao, Cindy Q.; Boutros, Paul C.; Pohjanvirta, Raimo; Valdés-Flores, Jesús; Elizondo, Guillermo (2019)
    Alternative splicing is a co-transcriptional mechanism that generates protein diversity by including or excluding exons in different combinations, thereby expanding the diversity of protein isoforms of a single gene. Abnormalities in this process can result in deleterious effects to human health, and several xenobiotics are known to interfere with splicing regulation through multiple mechanisms. These changes could lead to human diseases such as cancer, neurological disorders, autoimmune diseases, and developmental disorders. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant generated as a byproduct of various industrial activities. Exposure to this dioxin has been linked to a wide range of pathologies through the alteration of multiple cellular processes. However, the effects of TCDD exposure on alternative splicing have not yet been studied. Here, we investigated whether a single po. dose of 5 μg/kg or 500 μg/kg TCDD influence hepatic alternative splicing in adult male C57BL/6Kou mouse. We identified several genes whose alternative splicing of precursor messenger RNAs was modified following TCDD exposure. In particular, we demonstrated that alternative splicing of Cyp1a1, Ahrr, and Actn1 was significantly altered after TCDD treatment. These findings show that the exposure to TCDD has an impact on alternative-splicing, and suggest a new avenue for understanding TCDD-mediated toxicity and pathogenesis.
  • Känsäkoski, Johanna; Jaaskelainen, Jarmo; Jaaskelainen, Tiina; Tommiska, Johanna; Saarinen, Lilli; Lehtonen, Rainer; Hautaniemi, Sampsa; Frilander, Mikko J.; Palvimo, Jorma J.; Toppari, Jorma; Raivio, Taneli (2016)
    Mutations in the X-linked androgen receptor (AR) gene underlie complete androgen insensitivity syndrome (CAIS), the most common cause of 46, XY sex reversal. Molecular genetic diagnosis of CAIS, however, remains uncertain in patients who show normal coding region of AR. Here, we describe a novel mechanism of AR disruption leading to CAIS in two 46, XY sisters. We analyzed whole-genome sequencing data of the patients for pathogenic variants outside the AR coding region. Patient fibroblasts from the genital area were used for AR cDNA analysis and protein quantification. Analysis of the cDNA revealed aberrant splicing of the mRNA caused by a deep intronic mutation (c.2450-118A>G) in the intron 6 of AR. The mutation creates a de novo 5' splice site and a putative exonic splicing enhancer motif, which leads to the preferential formation of two aberrantly spliced mRNAs (predicted to include a premature stop codon). Patient fibroblasts contained no detectable AR protein. Our results show that patients with CAIS and normal AR coding region need to be examined for deep intronic mutations that can lead to pseudoexon activation.
  • Torella, Annalaura; Zanobio, Mariateresa; Zeuli, Roberta; Blanco, Francesca del Vecchio; Savarese, Marco; Giugliano, Teresa; Garofalo, Arcomaria; Piluso, Giulio; Politano, Luisa; Nigro, Vincenzo (2020)
    A nonsense mutation adds a premature stop signal that hinders any further translation of a protein-coding gene, usually resulting in a null allele. To investigate the possible exceptions, we used theDMDgene as an ideal model. First, because dystrophin absence causes Duchenne muscular dystrophy (DMD), while its reduction causes Becker muscular dystrophy (BMD). Second, theDMDgene is X-linked and there is no second allele that can interfere in males. Third, databases are accumulating reports on many mutations and phenotypic data. Finally, becauseDMDmutations may have important therapeutic implications. For our study, we analyzed large databases (LOVD, HGMD and ClinVar) and literature and revised critically all data, together with data from our internal patients. We totally collected 2593 patients. Positioning these mutations along the dystrophin transcript, we observed a nonrandom distribution of BMD-associated mutations within selected exons and concluded that the position can be predictive of the phenotype. Nonsense mutations always cause DMD when occurring at any point in fifty-one exons. In the remaining exons, we found milder BMD cases due to early 5' nonsense mutations, if reinitiation can occur, or due to late 3' nonsense when the shortened product retains functionality. In the central part of the gene, all mutations in some in-frame exons, such as in exons 25, 31, 37 and 38 cause BMD, while mutations in exons 30, 32, 34 and 36 cause DMD. This may have important implication in predicting the natural history and the efficacy of therapeutic use of drug-stimulated translational readthrough of premature termination codons, also considering the action of internal natural rescuers. More in general, our survey confirm that a nonsense mutation should be not necessarily classified as a null allele and this should be considered in genetic counselling.