Browsing by Subject "EXPLOSIVE VOLCANISM"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Rothery, David A.; Massironi, Matteo; Alemanno, Giulia; Barraud, Oceane; Besse, Sebastien; Bott, Nicolas; Brunetto, Rosario; Bunce, Emma; Byrne, Paul; Capaccioni, Fabrizio; Capria, Maria Teresa; Carli, Cristian; Charlier, Bernard; Cornet, Thomas; Cremonese, Gabriele; D'Amore, Mario; De Sanctis, M. Cristina; Doressoundiram, Alain; Ferranti, Luigi; Filacchione, Gianrico; Galluzzi, Valentina; Giacomini, Lorenza; Grande, Manuel; Guzzetta, Laura G.; Helbert, Joern; Heyner, Daniel; Hiesinger, Harald; Hussmann, Hauke; Hyodo, Ryuku; Kohout, Tomas; Kozyrev, Alexander; Litvak, Maxim; Lucchetti, Alice; Malakhov, Alexey; Malliband, Christopher; Mancinelli, Paolo; Martikainen, Julia; Martindale, Adrian; Maturilli, Alessandro; Milillo, Anna; Mitrofanov, Igor; Mokrousov, Maxim; Morlok, Andreas; Muinonen, Karri; Namur, Olivier; Owens, Alan; Nittler, Larry R.; Oliveira, Joana S.; Palumbo, Pasquale; Pajola, Maurizio; Pegg, David L.; Penttilä, Antti; Politi, Romolo; Quarati, Francesco; Re, Cristina; Sanin, Anton; Schulz, Rita; Stangarone, Claudia; Stojic, Aleksandra; Tretiyakov, Vladislav; Vaisanen, Timo; Varatharajan, Indhu; Weber, Iris; Wright, Jack; Wurz, Peter; Zambon, Francesca (2020)
    BepiColombo has a larger and in many ways more capable suite of instruments relevant for determination of the topographic, physical, chemical and mineralogical properties of Mercury's surface than the suite carried by NASA's MESSENGER spacecraft. Moreover, BepiColombo's data rate is substantially higher. This equips it to confirm, elaborate upon, and go beyond many of MESSENGER's remarkable achievements. Furthermore, the geometry of BepiColombo's orbital science campaign, beginning in 2026, will enable it to make uniformly resolved observations of both northern and southern hemispheres. This will offer more detailed and complete imaging and topographic mapping, element mapping with better sensitivity and improved spatial resolution, and totally new mineralogical mapping. We discuss MESSENGER data in the context of preparing for BepiColombo, and describe the contributions that we expect BepiColombo to make towards increased knowledge and understanding of Mercury's surface and its composition. Much current work, including analysis of analogue materials, is directed towards better preparing ourselves to understand what BepiColombo might reveal. Some of MESSENGER's more remarkable observations were obtained under unique or extreme conditions. BepiColombo should be able to confirm the validity of these observations and reveal the extent to which they are representative of the planet as a whole. It will also make new observations to clarify geological processes governing and reflecting crustal origin and evolution. We anticipate that the insights gained into Mercury's geological history and its current space weathering environment will enable us to better understand the relationships of surface chemistry, morphologies and structures with the composition of crustal types, including the nature and mobility of volatile species. This will enable estimation of the composition of the mantle from which the crust was derived, and lead to tighter constraints on models for Mercury's origin including the nature and original heliocentric distance of the material from which it formed.
  • Cremonese, G.; Capaccioni, F.; Capria, M. T.; Doressoundiram, A.; Palumbo, P.; Vincendon, M.; Massironi, M.; Debei, S.; Zusi, M.; Altieri, F.; Amoroso, M.; Aroldi, G.; Baroni, M.; Barucci, A.; Bellucci, G.; Benkhoff, J.; Besse, S.; Bettanini, C.; Blecka, M.; Borrelli, D.; Brucato, J. R.; Carli, C.; Carlier, Elodie; Cerroni, P.; Cicchetti, A.; Colangeli, L.; Dami, M.; Da Deppo, V.; Della Corte; De Sanctis, M. C.; Erard, S.; Esposito, F.; Fantinel, D.; Ferranti, L.; Ferri, F.; Veltroni, I. Ficai; Filacchione, G.; Flamini, E.; Forlani, G.; Fornasier, S.; Forni, O.; Fulchignoni, M.; Galluzzi, Lorenzo; Gwinner, K.; Ip, W.; Jorda, L.; Langevin, Y.; Lara, L.; Leblanc, F.; Leyrat, C.; Li, Y.; Marchi, S.; Marinangeli, L.; Marzari, F.; Epifani, E. Mazzotta; Mendillom, M.; Mennella, A.; Mugnuolo, R.; Muinonen, K.; Naletto, G.; Noschese, R.; Palomba, E.; Paolinetti, R.; Perna, D.; Piccioni, G.; Politi, R.; Poulet, F.; Ragazzoni, R.; Re, C.; Rossi, M.; Rotundi, A.; Salemi, G.; Sgavetti, M.; Simioni, E.; Thomas, N.; Tommasi, L.; Turella, A.; Van Hoolst, T.; Wilson, L.; Zambon, F.; Aboudan, A.; Barraud, O.; Bott, N.; Borin, P.; Colombatti, G.; El Yazidi, M.; Ferrari, S.; Flahaut, J.; Giacomini, L.; Guzzetta, L.; Lucchetti, A.; Martellato, E.; Pajola, M.; Slemer, A.; Tognon, G.; Turrini, D. (2020)
    The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon + science program. The SIMBIO-SYS instrument will provide all the science imaging capability of the BepiColombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with a broad spectral band in the 400-950 nm range and medium spatial resolution (at best 58 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel (HRIC), with broad spectral bands in the 400-900 nm range and high spatial resolution (at best 6 m/px), that will provide high-resolution images of about 20% of the surface, and the Visible and near-Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (6 nm at finest) in the 400-2000 nm range and spatial resolution reaching 120 m/px, it will provide global coverage at 480 m/px with the spectral information, assuming the first orbit around Mercury with periherm at 480 km from the surface. SIMBIO-SYS will provide high-resolution images, the Digital Terrain Model of the entire surface, and the surface composition using a wide spectral range, as for instance detecting sulphides or material derived by sulphur and carbon oxidation, at resolutions and coverage higher than the MESSENGER mission with a full co-alignment of the three channels. All the data that will be acquired will allow to cover a wide range of scientific objectives, from the surface processes and cartography up to the internal structure, contributing to the libration experiment, and the surface-exosphere interaction. The global 3D and spectral mapping will allow to study the morphology and the composition of any surface feature. In this work, we describe the on-ground calibrations and the results obtained, providing an important overview of the instrument performances. The calibrations have been performed at channel and at system levels, utilizing specific setup in most of the cases realized for SIMBIO-SYS. In the case of the stereo camera (STC), it has been necessary to have a validation of the new stereo concept adopted, based on the push-frame. This work describes also the results of the Near-Earth Commissioning Phase performed few weeks after the Launch (20 October 2018). According to the calibration results and the first commissioning the three channels are working very well.