Browsing by Subject "EXTRACTS"

Sort by: Order: Results:

Now showing items 1-17 of 17
  • Purhonen, Janne; Banerjee, Rishi; McDonald, Allison E.; Fellman, Vineta; Kallijarvi, Jukka (2020)
    Deoxyribonucleoside triphosphates (dNTPs) are vital for the biosynthesis and repair of DNA. Their cellular concentration peaks during the S phase of the cell cycle. In non-proliferating cells, dNTP concentrations are low, making their reliable quantification from tissue samples of heterogeneous cellular composition challenging. Partly because of this, the current knowledge related to the regulation of and disturbances in cellular dNTP concentrations derive mostly from cell culture experiments with little corroboration at the tissue or organismal level. Here, we fill the methodological gap by presenting a simple non-radioactive microplate assay for the quantification of dNTPs with a minimum requirement of 4-12 mg of biopsy material. In contrast to published assays, this assay is based on long synthetic single-stranded DNA templates (50-200 nucleotides), an inhibitor-resistant high-fidelity DNA polymerase, and the double-stranded-DNA-binding EvaGreen dye. The assay quantified reliably less than 50 fmol of each of the four dNTPs and discriminated well against ribonucleotides. Additionally, thermostable RNAse HII-mediated nicking of the reaction products and a subsequent shift in their melting temperature allowed near-complete elimination of the interfering ribonucleotide signal, if present. Importantly, the assay allowed measurement of minute dNTP concentrations in mouse liver, heart and skeletal muscle.
  • Mgbeahuruike, Eunice Ego; Holm, Yvonne; Vuorela, Heikki; Amandikwa, Chinyere; Fyhrquist, Pia (2019)
    Ethnobotanical relevance: Piper guineense occurs commonly in West Africa where it is used for fungal infections instead of the costly and not always accessible conventional antifungals. Fungal, yeast-based diseases are common in West-Africa especially among those living with HIV/AIDS, and thus this study was performed in Imo state, South-Eastern Nigeria, where P. guineense is predominantly used for the treatment of fungal diseases, such as skin rashes, oral thrush and vaginosis. Aim of study: The scarce number of previous studies on the documentation of the traditional uses of P. guineense extracts for the treatment of fungal infections in Nigeria prompted this survey. The investigation focused on how traditional healers recognize and diagnose fungal infections, how P. guineense is collected, on the various parts used for the treatments, methods of preparations, administrations and treatments. In addition, an in vitro anti fungal screening of P. guineense fruit and leaf extracts of various polarities, and piperine and piperlongumine, representing the main constituents in these extracts, were performed. Methods: A house to house ethnobotanical survey was conducted using questionnaires. Twenty traditional medical practitioners (TMP) and herb sellers from ten villages were interviewed. Four human pathogenic strains of yeast and Cryptococcus neoformans, a yeast-like basidiomycete causing meningitis in immunocompromised individuals, were used for the antifungal screening. Results: The traditional medical practitioners (TMP) and herb sellers explained that the leaves and fruits are the most commonly used plant parts for the treatments. The oral intake of the extracts in locally produced bamboo alcohol (Kai-kai) is the most common method of administration. In accordance with these recorded traditional uses, we found that extracts of P. guineense were growth inhibitory against the fungal strains with MIC values ranging from 39 to 2500 g/mL. The lowest MIC value of 39 g/mL was recorded for a methanol fruit extract against Candida albicans, C. glabrata and C. tropicalis. In addition, ethanol and hexane fruit extracts were effective against the growth of C. albicans and C. glabrata, respectively, with a MIC of 78 g/mL. Piperlongumine and piperine were active against C. albicans with MIC values of 39 and 78 g/mL respectively. Conclusion: P. guineense fruit and leaf extracts, as well as their piperamide alkaloid constituents piperine and piperlongumine, have interesting antifungal properties and could have potential as new antifungal scaffolds. Our results warrant further in-depth investigations to isolate and characterize piperamide alkaloids and other compounds responsible for the antifungal activity in the extracts.
  • Ousaaid, Driss; Ghouizi, Asmae El; Laaroussi, Hassan; Bakour, Meryem; Mechchate, Hamza; Es-safi, Imane; Kamaly, Omkulthom Al; Saleh, Asmaa; Conte, Raffaele; Lyoussi, Badiaa; El Arabi, Ilham (2022)
    This study aims to examine the ability of apple vinegar on phenylhydrazine (PHZ)-induced hemolytic anemia in Wistar rats. In vitro, phenolic and flavonoid content and antioxidant activity were determined. In vivo, phenylhydrazine (10 mg/kg) was injected intravenously into rats for 4 days and then treated with apple vinegar daily by gavage (1 mL/kg) for five weeks. high level of polyphenols and flavonoids (90 +/- 1.66 mg GAE/100 mL and 7.29 +/- 0.23 mg QE/100 mL, respectively) were found in the apple vinegar which gives it a good ability to scavenge free radicals (TAC = 4.22 +/- 0.18 mg AAE/100 mL and DPPH, IC50 = 0.49 +/- 0.004 mu L/ml). The phytochemical composition of apple vinegar revealed the presence of numerous bioactive compounds including arbutin, apigenin, sinapic, ferulic and trans-ferulic acids. The major antioxidant components in apple vinegar were ferulic and trans-ferulic acids (40% and 43%, respectively). PHZ treatment induced changes in platelets, blood cell count, mean corpuscular volume, hemoglobin concentration and mean capsulated hemoglobin. However, the co-administration of apple vinegar revealed its capacity to ameliorate the changes induced by phenylhydrazine. Therefore, apple vinegar use could have a positive impact on the prevention of hemolytic anemia induced by phenylhydrazine due to the antioxidant properties of its major components.
  • Raudsepp, Piret; Koskar, Julia; Anton, Dea; Meremäe, Kadrin; Kapp, Karmen; Laurson, Peeter; Bleive, Uko; Kaldmäe, Hedi; Roasto, Mati; Püssa, Tõnu (2019)
    BACKGROUND It is important to find plant materials that can inhibit the growth of Listeria monocytogenes and other food-spoiling bacteria both in vitro and in situ. The aim of the study was to compare antibacterial and antioxidative activity of selected plant-ethanol infusions: leaves and berries of blackcurrant (Ribes nigrum L.), berries of chokeberry (Aronia melanocarpa (Michx.) Elliott) and blue honeysuckle (Lonicera caerulea L. var. edulis); petioles and dark and light roots of garden rhubarb (Rheum rhaponticum L.) for potential use in food matrices as antibacterial and antioxidative additives. RESULTS The strongest bacterial growth inhibition was observed in 96% ethanol infusions of the dark roots of rhubarbs. In 96% ethanol, nine out of ten studied plant infusions had antibacterial effect against L. monocytogenes, but in 20% ethanol only the infusions of dark rhubarb roots had a similar effect. Chokeberry and other berries had the highest antioxidative activity, both in 20% and 96% ethanol infusions. CONCLUSION The combination of dark rhubarb roots or petioles and berries of black chokeberry, blackcurrant or some other anthocyanin-rich berries would have potential as both antibacterial and antioxidative additives in food. (c) 2018 Society of Chemical Industry
  • Mauramo, Matti; Onali, Tuulia; Wahbi, Wafa; Vasara, Jenni; Lampinen, Anniina; Mauramo, Elina; Kivimäki, Anne; Martens, Stefan; Häggman, Hely; Sutinen, Meeri; Salo, Tuula (2021)
    Previous studies indicate that bilberry with high amounts of phenolic compounds can inhibit carcinogenic processes of colorectal cancer in vitro and in vivo. However, no studies have focused on the effects of bilberry on oral cancer. In this study, we aimed to examine the effects of bilberry powder on oral squamous cell carcinoma (OSCC) cells using both in vitro and in vivo assays. The effects of 0, 1, 10, and 25 mg/mL of whole bilberry powder on the viability, proliferation, migration, and invasion of OSCC (HSC-3) cells were examined and compared with 0.01 mg/mL of cetuximab. Two oral keratinocyte cell lines served as controls. Tumor area was analyzed in zebrafish microinjected with HSC-3 cells and treated with 2.5, 10, or 25 mu g/mL of bilberry powder. Metastases in the head or tail areas were counted. Bilberry powder inhibited the viability, proliferation, migration, and invasion of HSC-3 cells (p < 0.05), which was more pronounced with higher concentrations. Cetuximab had no effect on HSC-3 cell migration or invasion. Compared to controls, the tumor area in zebrafish treated with bilberry powder (10 and 25 mu g/mL) was reduced significantly (p = 0.038 and p = 0.021, respectively), but the number of fish with metastases did not differ between groups. Based on our in vitro and in vivo experiments, we conclude that whole bilberry powder has anti-tumor effects on OSCC cells.
  • Verni, Michela; Pontonio, Erica; Krona, Annika; Jacob, Sera; Pinto, Daniela; Verardo, Vito; Díaz-de-Cerio, Elixabet; Coda, Rossana; Rizzello, Carlo (2020)
    Brewers' spent grain (BSG) is the major by-product of the brewing industry which remain largely unutilized despite its nutritional quality. In this study, the effects of fermentation on BSG antioxidant potential were analyzed. A biotechnological protocol including the use of xylanase followed by fermentation withLactiplantibacillus plantarum (Lactobacillus plantarum)PU1, PRO17, and H46 was used. Bioprocessed BSG exhibited enhanced antioxidant potential, characterized by high radical scavenging activity, long-term inhibition of linoleic acid oxidation and protective effect toward oxidative stress on human keratinocytes NCTC 2544. Immunolabelling and confocal laser microscopy showed that xylanase caused an extensive cell wall arabinoxylan disruption, contributing to the release of bound phenols molecules, thus available to further conversion through lactic acid bacteria metabolism. To clarify the role of fermentation on the antioxidant BSG potential, phenols were selectively extracted and characterized through HPLC-MS techniques. Novel antioxidant peptides were purified and identified in the most active bioprocessed BSG.
  • Anton, Dea; Bender, Ingrid; Kaart, Tanel; Roasto, Mati; Heinonen, Marina; Luik, Anne; Puessa, Tonu (2017)
    Polyphenols of fruits and vegetables form an important part of human dietary compounds. Relatively little is known about accumulation of phenolics during fruits ripening process. The goal of this work was to study the changes in antioxidant activity and in content of 30 polyphenols during ripening of tomato fruits. Five organically and conventionally grown tomato cultivars were investigated at three different ripening stages. Phenolic compounds were extracted with methanol and extracts were analyzed by HPLC-DAD-MS/MS. During ripening, four different changing patterns were observed: (1) high level in green fruits with minimal changes; (2) continuous increase with maximum level in red-ripe fruits; (3) decrease; (4) increase and achieving maximum level at half-ripe stage. Similar change patterns were found for organic and conventional fruits. The accumulation patterns of phenolic compounds were similar in standard-type tomatoes but differed in several cases in cherry-type cultivar. Although contents of some polyphenols decreased during ripening, total phenolics and free radical scavenging activity increased in all studied cultivars and in case of both cultivationmodes. The changes in content of phenolic compounds during ripening were greatly influenced by cultivars, but cultivation mode had only minor impact on dynamics in polyphenols contents in tomato fruits.
  • Tagnaout, Imane; Zerkani, Hannou; Hadi, Nadia; El Moumen, Bouchra; El Makhoukhi, Fadoua; Bouhrim, Mohamed; Al-Salahi, Rashad; Nasr, Fahd A.; Mechchate, Hamza; Zair, Touriya (2022)
    Thymus capitatus and Thymus broussonnetii are two Moroccan endemic medicinal plants used traditionally by the local population. The present study aims to investigate their essential oil chemical composition, antioxidant and antibacterial activities. The chemical composition of the essential oils was determined using the GC-MS analysis, the antioxidant activity assessed using DPPH and FRAP methods while the antimicrobial activity was evaluated against nine bacteria species tested (Enterococcus faecalis, Serratia fonticola, Acinetobacter baumannii, Klebsiella oxytoca, sensitive Klebsiella pneumoniae, sensitive Escherichia coli, resistant Escherichia coli, resistant Staphylococcus aureus and Enterobacter aerogenes). The major identified compounds of T. capitatus essential oil where carvacrol (75%) and p-cymene (10.58%) while carvacrol (60.79%), thymol (12.9%), p-cymene (6.21%) and gamma-terpinene (4.47%) are the main compounds in T. broussonnetii essential oil. The bioactivity of the essential oils of the two species of thyme was explained by their richness in oxygenated monoterpenes known for their great effectiveness with an IC50 of 3.48 +/- 0.05 and 4.88 +/- 0.04 mu L/mL and EC50 of 0.12 +/- 0.01 and 0.20 +/- 0.02 mu L/mL in the DPPH and FRAP assays, respectively, with an important antibacterial activity. These results encourage the use of these plants as a source of natural antioxidants, and antibacterial additives, to protect food from oxidative damage and to eliminate bacteria that are responsible for nosocomial infections.
  • Kauhanen, Dimple; Sysi-Aho, Marko; Koistinen, Kaisa M.; Laaksonen, Reijo; Sinisalo, Juha; Ekroos, Kim (2016)
    Monitoring the levels of the ceramides (Cer) d18:1/16:0, Cer d18:1/18:0, Cer d18:1/24:0, and Cer d18:1/24:1 and ratios thereof in human plasma empowers the prediction of fatal outcome of coronary artery disease (CAD). We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology for clinical-scaled measurement of the four distinct ceramides. Rapid plasma precipitation was accomplished in 96-well format. Excellent extraction recoveries in the range of 98-109 % were achieved for each ceramide. Addition of corresponding D-7-labeled ceramide standards facilitated precise quantification of each plasma ceramide species utilizing a novel short 5-min LC-MS/MS method. Neither matrix interference nor carryover was observed. Robust intra- and inter-assay accuracy and precision <15 % at five different concentrations were obtained. Linear calibration lines with regressions, R (2) > 0.99, were achieved for all analytes. Short-term bench top, long-term plasma, and extract stability demonstrated that the distinct ceramides were stable in the conditions evaluated. The validity of the methodology was demonstrated by determining the precise ceramide concentrations in a small CAD case-control study. Thus, our LC-MS/MS methodology features simple sample preparation and short analysis time for accurate quantification of Cer d18:1/16:0, Cer d18:1/18:0, Cer d18:1/24:0, and Cer d18:1/24:1, designed for routine analysis.
  • Qian, Yun-Fang; Lin, Ting; Liu, Xiao; Pan, Jiao; Xie, Jing; Yang, Sheng-Ping (2022)
    The antioxidant and antibacterial properties of four essential oils (oregano essential oil (OEO), tea tree essential oil (TTEO), wild orange essential oil (WOEO), and clove leaf essential oil (CLEO)) were determined. The in-vitro experiment indicated that CLEO had the highest total phenolic content and DPPH scavenging activity, and OEO displayed the highest antibacterial effect, so they were applied to maintain the quality of shrimp for further study. In-situ study, the total viable counts of shrimp were inhibited from 9.05 log CFU/g to 8.18 and 8.34 log CFU/g by 2% of OEO and CLEO treated alone on 10 d. The melanosis ratio was also retarded from 38.16% to 28.98% and 26.35% by the two essential oils. The inhibitory effects of OEO and CLEO on the increase of PPO activity, weight loss, and TCA-soluble peptides, and the decreasing tendency of whiteness, the contents of myofibrillar and sarcoplasmic proteins were also founded. The samples treated with 1% OEO + 1% CLEO had better quality than those treated alone. Therefore, the combination of OEO and CLEO had a synergistic effect, which displayed the highest efficiency to prevent the melanosis, bacterial growth, and protein hydrolysis of shrimp.
  • de Vera, Caterina R.; Díaz Crespín, Guillermo; Hernández Daranas, Antonio; Montalvão Looga, Sofia; Lillsunde, Katja-Emilia; Tammela, Päivi; Perälä, Merja; Hongisto, Vesa; Virtanen, Johannes; Rischer, Heiko; Muller, Christian D.; Norte, Manuel; Fernández, José J.; Souto, María L. (2018)
    The study of marine natural products for their bioactive potential has gained strength in recent years. Oceans harbor a vast variety of organisms that offer a biological and chemical diversity with metabolic abilities unrivalled in terrestrial systems, which makes them an attractive target for bioprospecting as an almost untapped resource of biotechnological applications. Among them, there is no doubt that microalgae could become genuine cell factories for the biological synthesis of bioactive substances. Thus, in the course of inter-laboratory collaboration sponsored by the European Union (7th FP) into the MAREX Project focused on the discovery of novel bioactive compounds of marine origin for the European industry, a bioprospecting study on 33 microalgae strains was carried out. The strains were cultured at laboratory scale. Two extracts were prepared for each one (biomass and cell free culture medium) and, thus, screened to provide information on the antimicrobial, the anti-proliferative, and the apoptotic potential of the studied extracts. The outcome of this study provides additional scientific data for the selection of Alexandrium tamarensis WE, Gambierdiscus australes, Prorocentrum arenarium, Prorocentrum hoffmannianum, and Prorocentrum reticulatum (Pr-3) for further investigation and offers support for the continued research of new potential drugs for human therapeutics from cultured microalgae.
  • Colclough, Abigail; Corander, Jukka; Sheppard, Samuel K.; Bayliss, Sion C.; Vos, Michiel (2019)
    Bacteria interact with a multitude of other organisms, many of which produce antimicrobials. Selection for resistance to these antimicrobials has the potential to result in resistance to clinical antibiotics when active compounds target the same bacterial pathways. The possibility of such cross-resistance between natural antimicrobials and antibiotics has to our knowledge received very little attention. The antimicrobial activity of extracts from seaweeds, known to be prolific producers of antimicrobials, is here tested against Staphylococcus aureus isolates with varied clinical antibiotic resistance profiles. An overall effect consistent with cross-resistance is demonstrated, with multidrug-resistant S. aureus strains being on average more resistant to seaweed extracts. This pattern could potentially indicate that evolution of resistance to antimicrobials in the natural environment could lead to resistance against clinical antibiotics. However, patterns of antimicrobial activity of individual seaweed extracts vary considerably and include collateral sensitivity, where increased resistance to a particular antibiotic is associated with decreased resistance to a particular seaweed extract. Our correlation-based methods allow the identification of antimicrobial extracts bearing most promise for downstream active compound identification and pharmacological testing.
  • Aguilera-Correa, John Jairo; Fernandez-Lopez, Sara; Cunas-Figueroa, Iskra Dennisse; Perez-Rial, Sandra; Alakomi, Hanna-Leena; Nohynek, Liisa; Oksman-Caldentey, Kirsi-Marja; Salminen, Juha-Pekka; Esteban, Jaime; Cuadros, Juan; Puupponen-Pimia, Riitta; Perez-Tanoira, Ramon; Kinnari, Teemu J. (2021)
    Staphylococcus aureus is the most common cause of surgical site infections and its treatment is challenging due to the emergence of multi-drug resistant strains such as methicillin-resistant S. aureus (MRSA). Natural berry-derived compounds have shown antimicrobial potential, e.g., ellagitannins such as sanguiin H-6 and lambertianin C, the main phenolic compounds in Rubus seeds, have shown antimicrobial activity. The aim of this study was to evaluate the effect of sanguiin H-6 and lambertianin C fractionated from cloudberry seeds, on the MRSA growth, and as treatment of a MRSA biofilm development in different growth media in vitro and in vivo by using a murine wound infection model where sanguiin H-6 and lambertianin C were used to prevent the MRSA infection. Sanguiin H-6 and lambertianin C inhibited the in vitro biofilm development and growth of MRSA. Furthermore, sanguiin H-6 showed significant anti-MRSA effect in the in vivo wound model. Our study shows the possible use of sanguiin H-6 as a preventive measure in surgical sites to avoid postoperative infections, whilst lambertianin C showed no anti-MRSA activity.
  • Lohtander, Tia; Durandin, Nikita; Laaksonen, Timo; Arola, Suvi; Laaksonen, Päivi (2021)
    Synthetic dyes are vastly used for colouring numerous materials, although the adverse effects on environment are well recognized. In addition to developing the existing dyeing technologies more efficient and cleaner, the valorisation of natural dyes can enhance the sustainable development of dyeing industry. Natural indigo, derived from Isatis tinctoria, is a bio-based alternative for indigo produced via chemical synthesis routes. Owing to the insoluble character of indigo pigment, the dye requires conversion into soluble leucoindigo form prior to dyeing, which is often accomplished by using harsh sodium dithionite vat technique. During the processing from plant to dye attached on a fabric, indigo is transferred from the soluble leucoindigo form to the oxidized insoluble indigo and once more back to leucoindigo. Additionally, the oxidation is difficult to control and with traditional vat technique maintaining the leucoindigo through the dyeing often requires adding more reducing agent chemicals. Maintaining the soluble form throughout the process would enable lower number of processing steps and reduce the use of harmful chemical agents. In the present study, the stabilization of leucoindigo on nanocellulose matrix carrier was investigated with spectroscopic and photophysical methods. According to the results, leucoindigo was successfully stabilized on nanocellulose suspension, most likely due to the limited rate of oxygen diffusion into the viscous medium. Visual observations revealed that the leuco-form was retained even longer with natural indigo than synthetic indigo. This enhanced stability was attributed to the presence of radical scavenging species in natural indigo since the synthetic indigo did not show notable antioxidant properties. Given the promising results the paste formulation was demonstrated to be applicable for creating patterns on cotton using a screen-printing technique. Since the leucoindigo was stabilized on nanocellulose carrier, the need for re-reduction prior to dyeing was avoided and the amount of harmful reducing chemicals was reduced. These findings also show that the characteristics of natural dyes that are often considered disadvantageous compared to synthetic dyestuff, i.e. presence of co-products in the mixture, can however, create more value to the dyed material through new functionalities.
  • Akter, Taslima; Shahriar, Asif; Rahman, Tasmina; Mahmud, Md. Rayhan; Alo, Mahenaj; Emran, Talha Bin (2020)
    Table grape act as a popular and mouthwatering fruit supplement over the world. Unhygienic handling of these fruits can possess a diverse threat to public health safety. Moreover, the fruit juice can serve as a nutrient for bacterial growth as well if kept in an unsanitary condition. For this purpose, five imported grape samples (Red Globe, Perlette, Calmeria, Princess and Summer Royal) were tested to assess the presence of pathogenic bacteria and drug-resistant pattern of the isolates. The total bacterial count (TBC) and total fungal count (TFC) showed the presence large amount of bacterial (ranged from 4.4 x 10(4) to 8.1 x 10(7)) and fungal population on the grapes samples, especially on the skin part of the fruits. Several pathogenic isolates, Escherichia coli, Staphylococcus spp., and Pseudomonas spp. were isolated from tested grape samples. However, the presence of Salmonella spp., Shigella spp., Vibrio spp. and Klebsiella spp. were not found from any of the samples. The concerning part of the present study was drug-resistant bacterial strains isolated from supplied Fresh Summer Royal Grape. The most of the isolated bacterial spp. were resistant to all most all of the commonly used antibiotics such as ampicillin (10 mu g), trimethoprim/sulfamethoxazole (25 mu g), tetracycline (30 mu g), ceftriaxone (30 mu g), imipenem (10 mu g), chloramphenicol (30 mu g), azithromycin (15 mu g), novobiocin (30 mu g), vancomycin (30 mu g), penicillin G (10 mu g), ciprofloxacin (5 mu g), neomycin (30 mu g), levofloxacin (5 mu g), kanamycin (30 mu g) and cefiximycin (5 mu g). No grape samples showed any kind of antimicrobial activity against both pathogenic and non-pathogenic bacteria. The survival pattern of inoculated bacterial samples in the grape sample showed a slight decrease in growth in the course of time.
  • Salih, Enass Y.A.; Julkunen-Tiitto, Riitta; Lampi, Anna-Maija; Kanninen, Markku; Luukkanen, Olavi; Sipi, Marketta; Lehtonen, Mari; Vuorela, Heikki; Fyhrquist, Pia (2018)
    AbstractEthnopharmacological relevance Terminalia laxiflora Engl. & Diels, (Sudanese Arabic name: Darout الدروت) and Terminalia brownii Fresen (Sudanese Arabic name: Alshaf ألشاف) (Combretaceae) are used in Sudanese traditional folk medicine and in other African countries for treatment of infectious diseases, TB and its symptoms, such as cough, bronchitis and chest pain. Aim of study Because of the frequent use of T. laxiflora and T. brownii in African traditional medicine and due to the absence of studies regarding their antimycobacterial potential there was a need to screen extracts of T. laxiflora and T. brownii for their growth inhibitory potential and to study the chemical composition and compounds in growth inhibitory extracts. Materials and methods The plant species were collected in Sudan (Blue Nile Forest, Ed Damazin Forestry areas) and selected according to their uses in traditional medicine for the treatment of bacterial infections, including TB. Eighty extracts and fractions of the stem bark, stem wood, roots, leaves and fruits of T. laxiflora and T. brownii and nine pure compounds present in the active extracts were screened against Mycobacterium smegmatis ATCC 14468 using agar diffusion and microplate dilution methods. Inhibition zones and MIC values were estimated and compared to rifampicin. HPLC-UV/DAD, GC/MS and UHPLC/Q-TOF MS were employed to identify the compounds in the growth inhibitory extracts. Results The roots of T. laxiflora and T. brownii gave the best antimycobacterial effects (IZ 22–27 mm) against Mycobacterium smegmatis. The lowest MIC of 625 µg/ml was observed for an acetone extract of the root of T. laxiflora followed by methanol and ethyl acetate extracts, both giving MIC values of 1250 µg/ml. Sephadex LH-20 column chromatography purification of T. brownii roots resulted in low MIC values of 62.5 µg/ml and 125 µg/ml for acetone and ethanol fractions, respectively, compared to 5000 µg/ml for the crude methanol extract. Methyl (S)-flavogallonate is suggested to be the main active compound in the Sephadex LH- 20 acetone fraction, while ellagic acid xyloside and methyl ellagic acid xyloside are suggested to give good antimycobacterial activity in the Sephadex LH-20 ethanol fraction. RP-18 TLC purifications of an ethyl acetate extract of T. laxiflora roots resulted in the enrichment of punicalagin in one of the fractions (Fr5). This fraction gave a five times smaller MIC (500 µg/ml) than the crude ethyl acetate extract (2500 µg/ml) and this improved activity is suggested to be mostly due to punicalagin. 1,18-octadec-9-ene-dioate, stigmast-4-en-3-one, 5α-stigmastan-3,6-dione, triacontanol, sitostenone and β-sitosterol were found in antimycobacterial hexane extracts of the stem bark of both studied species. Of these compounds, 1,18-octadec-9-ene-dioate, stigmast-4-en-3-one, 5α-stigmastan-3,6-dione, triacontanol, sitostenone have not been previously identified in T. brownii and T. laxiflora. Moreover, both plant species contained friedelin, betulinic acid, β-amyrine and two unknown oleanane-type triterpenoids. Of the listed compounds, friedelin, triacontanol and sitostenone gave a MIC of 250 µg/ml against M. smegmatis, whereas stigmasterol and β-sitosterol gave MIC values of 500 µg/ml. Conclusions Our results show that T. laxiflora and T. brownii contain antimycobacterial compounds of diverse polarities and support the traditional uses of various parts of T. laxiflora and T.brownii as decoctions for treatment of tuberculosis. Further investigations are warranted to explore additional (new) antimycobacterial compounds in the active extracts of T. laxiflora and T. brownii.
  • Flores-Rojas, Nelida Cecilia; Esterhuizen-Londt, Maranda; Pflugmacher, Stephan (2019)
    Cylindrospermopsin (CYN)-producing cyanobacterial blooms such as Raphidiopsis, Aphanizomenon, Anabaena, Umezakia, and Lyngbya spp. are occurring more commonly and frequently worldwide. CYN is an environmentally stable extracellular toxin, which inhibits protein synthesis, and, therefore, can potentially affect a wide variety of aquatic biota. Submerged and floating macrophytes, as primary producers in oligotrophic habitats, are at risk of exposure and information on the effects of CYN exposure at environmentally relevant concentrations is limited. In the present study, we investigated CYN uptake in the floating macrophyte Lemna minor with exposure to reported environmental concentrations. The effects were evaluated in terms of bioaccumulation, relative plant growth, and number of fronds per day. Variations in the concentrations and ratios of the chlorophylls as stress markers and carotenoids as markers of oxidative stress defense were measured. With exposure to 25 μg/L, L. minor could remove 43% of CYN within 24 h but CYN was not bioaccumulated. Generally, the pigment concentrations were elevated with exposure to 0.025, 0.25, and 2.5 μg/L CYN after 24 h, but normalized quickly thereafter. Changes in relative plant growth were observed with exposure to 0.25 and 2.5 μg/L CYN. Adverse effects were seen with these environmentally realistic concentrations within 24 h; however, L. minor successfully recovered within the next 48–96 h.