Browsing by Subject "Endocytosis"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Romano, Roberta; Rivellini, Cristina; De Luca, Maria; Tonlorenzi, Rossana; Beli, Raffaella; Manganelli, Fiore; Nolano, Maria; Santoro, Lucio; Eskelinen, Eeva-Liisa; Previtali, Stefano C.; Bucci, Cecilia (2021)
    The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.
  • Vidal-Quadras, Maite; Holst, Mikkel R.; Francis, Monika K.; Larsson, Elin; Hachimi, Mariam; Yau, Wai-Lok; Peranen, Johan; Martin-Belmonte, Fernando; Lundmark, Richard (2017)
    Adaptation of cell shape and polarization through the formation and retraction of cellular protrusions requires balancing of endocytosis and exocytosis combined with fine-tuning of the local activity of small GTPases like Rab8. Here, we show that endocytic turnover of the plasma membrane at protrusions is directly coupled to surface removal and inactivation of Rab8. Removal is induced by reduced membrane tension and mediated by the GTPase regulator associated with focal adhesion kinase-1 (GRAF1, also known as ARHGAP26), a regulator of clathrin-independent endocytosis. GRAF1-depleted cells were deficient in multi-directional spreading and displayed elevated levels of GTP-loaded Rab8, which was accumulated at the tips of static protrusions. Furthermore, GRAF1 depletion impaired lumen formation and spindle orientation in a 3D cell culture system, indicating that GRAF1 activity regulates polarity establishment. Our data suggest that GRAF1-mediated removal of Rab8 from the cell surface restricts its activity during protrusion formation, thereby facilitating dynamic adjustment of the polarity axis.
  • Raza, Shaffaq (Helsingin yliopisto, 2020)
    Growth differentiation factor 15 (GDF15), a member of TGF-β super family is a soluble cytokine that is associated with different pathological conditions including cancer, cardiac and renal failure and obesity. Its high serum levels are linked with symptoms like cachexia/anorexia in cancer patients and can be used as a marker for these diseases. Its crucial role in weight regulation and energy homeostasis has been demonstrated by treating obese mice with GDF15, which results in weight lose along with improved glucose metabolism and increased insulin tolerance. It is now known that GDF15 exerts its metabolic effect by binding to a GDNF receptor -α-Like (GFRAL) receptor along with co-receptor RET. Interestingly, these two receptors co-localize only in the brain stem area of mice and humans indicating involvement of a neuronal circuit in GDF15 mediated effects. Despite its implications in major health disorders, little is known about the interaction of GDF15 with its receptors and how this interaction in turn modulates different cellular signalling and functions. The aim of the thesis was to study the mechanism and factors involved in endocytosis of GDF15. I employed high content imaging and flow cytometry techniques to visualize and analyse the internalization of ligand-receptor complex and investigate the role of actin, dynamin and phosphoinositide 3 kinase in the process. The results suggest that similar to the internalization of other cellular growth factors, the uptake of GDF15 is affected by disruption of the actin cytoskeleton. The role of dynamin is still unclear. I also discovered that the internalization of GDF15 was inefficient even in cells that expressed the receptor GFRAL, with large cell-to-cell variation. By following the intracellular localization of the receptor GFRAL, my results revealed that the receptor GFRAL is not efficiently exported to the plasma membrane and most of the protein is retained in the Golgi compartment of cells. This phenomenon was stronger in murine fibroblast cells, where the receptor was almost exclusively trapped in the secretory compartment, explaining why the uptake of the ligand GDF15 is so inefficient in these cells. The system developed during this project will now be used to analyse different factors involved in the uptake of GDF15 and eventually uncover the possible endocytic pathway. Moreover, the Golgi retention of the receptor opens up new questions to investigate like whether the physiological function of GDF15 is regulated by receptor export signals. This will help deciphering the complex and mysterious interaction of GDF15 with its receptor GFRAL.