Browsing by Subject "Enteric nervous system"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Chalazonitis, Alcmène; Li, ZhiShan; Pham, Tuan D.; Chen, Jason; Rao, Meenakshi; Lindholm, Päivi; Saarma, Mart; Lindahl, Maria; Gershon, Michael D. (2020)
    Abstract Cerebral dopamine neurotrophic factor (CDNF) is expressed in the brain and is neuroprotective. We have previously shown that CDNF is also expressed in the bowel and that its absence leads to degeneration and autophagy in the enteric nervous system (ENS), particularly in the submucosal plexus. We now demonstrate that enteric CDNF immunoreactivity is restricted to neurons (submucosal > myenteric) and is not seen in glia, interstitial cells of Cajal, or smooth muscle. Expression of CDNF, moreover, is essential for the normal development and survival of enteric dopaminergic neurons; thus, expression of the dopaminergic neuronal markers, dopamine, tyrosine hydroxylase, and dopamine transporter are deficient in the ileum of Cdnf -/- mice. The normal age-related decline in proportions of submucosal dopaminergic neurons is exacerbated in Cdnf -/- animals. The defect in Cdnf -/- animals is not dopamine-restricted; proportions of other submucosal neurons (NOS-, GABA-, and CGRP-expressing), are also deficient. The deficits in submucosal neurons are reflected functionally in delayed gastric emptying, slowed colonic motility, and prolonged total gastrointestinal transit. CDNF is expressed selectively in isolated enteric neural crest-derived cells (ENCDC), which also express the dopamine-related transcription factor Foxa2. Addition of CDNF to ENCDC promotes development of dopaminergic neurons; moreover, survival or these neurons becomes CDNF-dependent after exposure to bone morphogenetic protein 4. The effects of neither glial cell-derived neurotrophic factor (GDNF) nor serotonin are additive with CDNF. We suggest that CDNF plays a critical role in development and long-term maintenance of dopaminergic and other sets of submucosal neurons. This article is protected by copyright. All rights reserved.
  • Lindahl, Maria; Chalazonitis, Alcmene; Palm, Erik; Pakarinen, Emmi; Danilova, Tatiana; Pham, Tuan D.; Setlik, Wanda; Rao, Meenakshi; Voikar, Vootele; Huotari, Jatta; Kopra, Jaakko; Andressoo, Jaan-Olle; Piepponen, Petteri T.; Airavaara, Mikko; Panhelainen, Anne; Gershon, Michael D.; Saarma, Mart (2020)
    Cerebral dopamine neurotrophic factor (CDNF) is neuroprotective for nigrostriatal dopamine neurons and restores dopaminergic function in animal models of Parkinson's disease (PD). To understand the role of CDNF in mammals, we generated CDNF knockout mice (Cdnf(-/-)), which are viable, fertile, and have a normal life-span. Surprisingly, an age-dependent loss of enteric neurons occurs selectively in the submucosal but not in the myenteric plexus. This neuronal loss is a consequence not of increased apoptosis but of neurodegeneration and autophagy. Quantitatively, the neurodegeneration and autophagy found in the submucosal plexus in duodenum, ileum and colon of the Cdnf(-/-) mouse are much greater than in those of Cdnf(+/+) mice. The selective vulnerability of submucosal neurons to the absence of CDNF is reminiscent of the tendency of pathological abnormalities to occur in the submucosal plexus in biopsies of patients with PD. In contrast, the number of substantia nigra dopamine neurons and dopamine and its metabolite concentrations in the striatum are unaltered in Cdnf(-/-) mice; however, there is an age-dependent deficit in the function of the dopamine system in Cdnf(-/-) male mice analyzed. This is observed as D-amphetamine-induced hyperactivity, aberrant dopamine transporter function, and as increased D-amphetamine-induced dopamine release demonstrating that dopaminergic axon terminal function in the striatum of the Cdnf(-/-) mouse brain is altered. The deficiencies of Cdnf(-/-) mice, therefore, are reminiscent of those seen in early stages of Parkinson's disease.