Browsing by Subject "Exome sequencing"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Harris, Elizabeth; Töpf, Ana; Vihola, Anna; Evilä, Anni; Barresi, Rita; Hudson, Judith; Hackman, Peter; Herron, Brian; MacArthur, Daniel; Lochmüller, Hanns; Bushby, Kate; Udd, Bjarne; Straub, Volker (2017)
    Mutations in the gene encoding the giant skeletal muscle protein titin are associated with a variety of muscle disorders, including recessive congenital myopathies cardiomyopathy, limb girdle muscular dystrophy (LGMD) and late onset dominant distal myopathy. Heterozygous truncating mutations have also been linked to dilated cardiomyopathy. The phenotypic spectrum of titinopathies is emerging and expanding, as next generation sequencing techniques make this large gene amenable to sequencing. We undertook whole exome sequencing in four individuals with LGMD. An essential splice site mutation, previously reported in dilated cardiomyopathy, was identified in all families in combination with a second truncating mutation. Affected individuals presented with childhood onset proximal weakness associated with joint contractures and elevated CK. Cardiac dysfunction was present in two individuals. Muscle biopsy showed increased internal nuclei and immunoblotting identified reduction or absence of calpain-3 and demonstrated a marked reduction of C-terminal titin fragments. We confirm the co-occurrence of cardiac and skeletal myopathies associated with recessive truncating titin mutations. Compound heterozygosity of a truncating mutation previously associated with dilated cardiomyopathy and a 'second truncation' in TTN was identified as causative in our skeletal myopathy patients. These findings add to the complexity of interpretation and genetic counselling for titin mutations. (C) 2017 Elsevier B.V. All rights reserved.
  • Maki-Nevala, Satu; Sarhadi, Virinder Kaur; Knuuttila, Aija; Scheinin, Ilari; Ellonen, Pekka; Lagstrom, Sonja; Ronty, Mikko; Kettunen, Eeva; Husgafvel-Pursiainen, Kirsti; Wolff, Henrik; Knuutila, Sakari (2016)
    Background Asbestos is a carcinogen linked to malignant mesothelioma (MM) and lung cancer. Some gene aberrations related to asbestos exposure are recognized, but many associated mutations remain obscure. We performed exome sequencing to determine the association of previously known mutations (driver gene mutations) with asbestos and to identify novel mutations related to asbestos exposure in lung adenocarcinoma (LAC) and MM. MethodsExome sequencing was performed on DNA from 47 tumor tissues of MM (21) and LAC (26) patients, 27 of whom had been asbestos-exposed (18 MM, 9 LAC). In addition, 9 normal lung/blood samples of LAC were sequenced. Novel mutations identified from exome data were validated by amplicon-based deep sequencing. Driver gene mutations in BRAF, EGFR, ERBB2, HRAS, KRAS, MET, NRAS, PIK3CA, STK11, and ephrin receptor genes (EPHA1-8, 10 and EPHB1-4, 6) were studied for both LAC and MM, and in BAP1, CUL1, CDKN2A, and NF2 for MM. ResultsIn asbestos-exposed MM patients, previously non-described NF2 frameshift mutation (one) and BAP1 mutations (four) were detected. Exome data mining revealed some genes potentially associated with asbestos exposure, such as MRPL1 and SDK1. BAP1 and COPG1 mutations were seen exclusively in MM. Pathogenic KRAS mutations were common in LAC patients (42 %), both in non-exposed (n = 5) and exposed patients (n = 6). Pathogenic BRAF mutations were found in two LACs. ConclusionBAP1 mutations occurred in asbestos-exposed MM. MRPL1, SDK1, SEMA5B, and INPP4A could possibly serve as candidate genes for alterations associated with asbestos exposure. KRAS mutations in LAC were not associated with asbestos exposure.
  • Kjällquist, Una; Erlandsson, Rikard; Tobin, Nicholas P.; Alkodsi, Amjad; Ullah, Ikram; Stalhammar, Gustav; Karlsson, Eva; Hatschek, Thomas; Hartman, Johan; Linnarsson, Sten; Bergh, Jonas (2018)
    Background: Tumor heterogeneity in breast cancer tumors is today widely recognized. Most of the available knowledge in genetic variation however, relates to the primary tumor while metastatic lesions are much less studied. Many studies have revealed marked alterations of standard prognostic and predictive factors during tumor progression. Characterization of paired primary- and metastatic tissues should therefore be fundamental in order to understand mechanisms of tumor progression, clonal relationship to tumor evolution as well as the therapeutic aspects of systemic disease. Methods: We performed full exome sequencing of primary breast cancers and their metastases in a cohort of ten patients and further confirmed our findings in an additional cohort of 20 patients with paired primary and metastatic tumors. Furthermore, we used gene expression from the metastatic lesions and a primary breast cancer data set to study the gene expression of the AKAP gene family. Results: We report that somatic mutations in A-kinase anchoring proteins are enriched in metastatic lesions. The frequency of mutation in the AKAP gene family was 10% in the primary tumors and 40% in metastatic lesions. Several copy number variations, including deletions in regions containing AKAP genes were detected and showed consistent patterns in both investigated cohorts. In a second cohort containing 20 patients with paired primary and metastatic lesions, AKAP mutations showed an increasing variant allele frequency after multiple relapses. Furthermore, gene expression profiles from the metastatic lesions (n = 120) revealed differential expression patterns of AKAPs relative to the tumor PAM50 intrinsic subtype, which were most apparent in the basal-like subtype. This pattern was confirmed in primary tumors from TCGA (n = 522) and in a third independent cohort (n = 182). Conclusion: Several studies from primary cancers have reported individual AKAP genes to be associated with cancer risk and metastatic relapses as well as direct involvement in cellular invasion and migration processes. Our findings reveal an enrichment of mutations in AKAP genes in metastatic breast cancers and suggest the involvement of AKAPs in the metastatic process. In addition, we report an AKAP gene expression pattern that consistently follows the tumor intrinsic subtype, further suggesting AKAP family members as relevant players in breast cancer biology.
  • Kjällquist, Una; Erlandsson, Rikard; Tobin, Nicholas P; Alkodsi, Amjad; Ullah, Ikram; Stålhammar, Gustav; Karlsson, Eva; Hatschek, Thomas; Hartman, Johan; Linnarsson, Sten; Bergh, Jonas (BioMed Central, 2018)
    Abstract Background Tumor heterogeneity in breast cancer tumors is today widely recognized. Most of the available knowledge in genetic variation however, relates to the primary tumor while metastatic lesions are much less studied. Many studies have revealed marked alterations of standard prognostic and predictive factors during tumor progression. Characterization of paired primary- and metastatic tissues should therefore be fundamental in order to understand mechanisms of tumor progression, clonal relationship to tumor evolution as well as the therapeutic aspects of systemic disease. Methods We performed full exome sequencing of primary breast cancers and their metastases in a cohort of ten patients and further confirmed our findings in an additional cohort of 20 patients with paired primary and metastatic tumors. Furthermore, we used gene expression from the metastatic lesions and a primary breast cancer data set to study the gene expression of the AKAP gene family. Results We report that somatic mutations in A-kinase anchoring proteins are enriched in metastatic lesions. The frequency of mutation in the AKAP gene family was 10% in the primary tumors and 40% in metastatic lesions. Several copy number variations, including deletions in regions containing AKAP genes were detected and showed consistent patterns in both investigated cohorts. In a second cohort containing 20 patients with paired primary and metastatic lesions, AKAP mutations showed an increasing variant allele frequency after multiple relapses. Furthermore, gene expression profiles from the metastatic lesions (n = 120) revealed differential expression patterns of AKAPs relative to the tumor PAM50 intrinsic subtype, which were most apparent in the basal-like subtype. This pattern was confirmed in primary tumors from TCGA (n = 522) and in a third independent cohort (n = 182). Conclusion Several studies from primary cancers have reported individual AKAP genes to be associated with cancer risk and metastatic relapses as well as direct involvement in cellular invasion and migration processes. Our findings reveal an enrichment of mutations in AKAP genes in metastatic breast cancers and suggest the involvement of AKAPs in the metastatic process. In addition, we report an AKAP gene expression pattern that consistently follows the tumor intrinsic subtype, further suggesting AKAP family members as relevant players in breast cancer biology.
  • Donner, Iikki; Katainen, Riku; Sipilä, Lauri J.; Aavikko, Mervi; Pukkala, Eero; Aaltonen, Lauri A. (2018)
    Objectives: Although the primary cause of lung cancer is smoking, a considerable proportion of all lung cancers occur in never smokers. Gender influences the risk and characteristics of lung cancer and women are over-represented among never smokers with the disease. Young age at onset and lack of established environmental risk factors suggest genetic predisposition. In this study, we used population-based sampling of young patients to discover candidate predisposition variants for lung adenocarcinoma in never-smoking women. Materials and methods: We employed archival normal tissue material from 21 never-smoker women who had been diagnosed with lung adenocarcinoma before the age of 45, and exome sequenced their germline DNA. Results and conclusion: Potentially pathogenic variants were found in eight Cancer Gene Census germline genes: BRCAI, BRCA2, ERCC4, EXT1, HNF1 A, PTCH1, SMARCB1 and TP53. The variants in TP53, BRCAI, and BRCA2 are likely to have contributed to the early onset lung cancer in the respective patients (3/21 or 14%). This supports the notion that lung adenocarcinoma can be a component of certain cancer predisposition syndromes. Fifteen genes displayed potentially pathogenic mutations in at least two patients: ABCC10, ATP7B, CACNA1S, CFTR, CLIP4, COL6A1, COL6A6, GCN1, GJB6, RYR1, SCN7A, SEC24A, SP100, TEN and USH2A. Four patients showed a mutation in COL6A1, three in CLIP4 and two in the rest of the genes. Some of these candidate genes may explain a subset of female lung adenocarcinoma.
  • Yasin, Samina; Makitie, Outi; Naz, Sadaf (2021)
    BackgroundLoss of function or gain of function variants of Filamin B (FLNB) cause recessive or dominant skeletal disorders respectively. Spondylocarpotarsal synostosis syndrome (SCT) is a rare autosomal recessive disorder characterized by short stature, fused vertebrae and fusion of carpal and tarsal bones. We present a novel FLNB homozygous pathogenic variant and present a carrier of the variant with short height.Case presentationWe describe a family with five patients affected with skeletal malformations, short stature and vertebral deformities. Exome sequencing revealed a novel homozygous frameshift variant c.2911dupG p.(Ala971GlyfsTer122) in FLNB, segregating with the phenotype in the family. The variant was absent in public databases and 100 ethnically matched control chromosomes. One of the heterozygous carriers of the variant had short stature.ConclusionOur report expands the genetic spectrum of FLNB pathogenic variants. It also indicates a need to assess the heights of other carriers of FLNB recessive variants to explore a possible role in idiopathic short stature.
  • Yasin, Samina; Mäkitie, Outi; Naz, Sadaf (BioMed Central, 2021)
    Abstract Background Loss of function or gain of function variants of Filamin B (FLNB) cause recessive or dominant skeletal disorders respectively. Spondylocarpotarsal synostosis syndrome (SCT) is a rare autosomal recessive disorder characterized by short stature, fused vertebrae and fusion of carpal and tarsal bones. We present a novel FLNB homozygous pathogenic variant and present a carrier of the variant with short height. Case presentation We describe a family with five patients affected with skeletal malformations, short stature and vertebral deformities. Exome sequencing revealed a novel homozygous frameshift variant c.2911dupG p.(Ala971GlyfsTer122) in FLNB, segregating with the phenotype in the family. The variant was absent in public databases and 100 ethnically matched control chromosomes. One of the heterozygous carriers of the variant had short stature. Conclusion Our report expands the genetic spectrum of FLNB pathogenic variants. It also indicates a need to assess the heights of other carriers of FLNB recessive variants to explore a possible role in idiopathic short stature.
  • Hirvonen, Elina A M; Pitkänen, Esa; Hemminki, Kari; Aaltonen, Lauri A.; Kilpivaara, Outi (BioMed Central, 2017)
    Abstract Background Polycythemia vera (PV), characterized by massive production of erythrocytes, is one of the myeloproliferative neoplasms. Most patients carry a somatic gain-of-function mutation in JAK2, c.1849G > T (p.Val617Phe), leading to constitutive activation of JAK-STAT signaling pathway. Familial clustering is also observed occasionally, but high-penetrance predisposition genes to PV have remained unidentified. Results We studied the predisposition to PV by exome sequencing (three cases) in a Finnish PV family with four patients. The 12 shared variants (maximum allowed minor allele frequency <0.001 in Finnish population in ExAC database) predicted damaging in silico and absent in an additional control set of over 500 Finns were further validated by Sanger sequencing in a fourth affected family member. Three novel predisposition candidate variants were identified: c.1254C > G (p.Phe418Leu) in ZXDC, c.1931C > G (p.Pro644Arg) in ATN1, and c.701G > A (p.Arg234Gln) in LRRC3. We also observed a rare, predicted benign germline variant c.2912C > G (p.Ala971Gly) in BCORL1 in all four patients. Somatic mutations in BCORL1 have been reported in myeloid malignancies. We further screened the variants in eight PV patients in six other Finnish families, but no other carriers were found. Conclusions Exome sequencing provides a powerful tool for the identification of novel variants, and understanding the familial predisposition of diseases. This is the first report on Finnish familial PV cases, and we identified three novel candidate variants that may predispose to the disease.
  • Hirvonen, Elina A. M.; Pitkanen, Esa; Hemminki, Kari; Aaltonen, Lauri A.; Kilpivaara, Outi (2017)
    Background: Polycythemia vera (PV), characterized by massive production of erythrocytes, is one of the myeloproliferative neoplasms. Most patients carry a somatic gain-of-function mutation in JAK2, c.1849G > T (p.Val617Phe), leading to constitutive activation of JAK-STAT signaling pathway. Familial clustering is also observed occasionally, but high-penetrance predisposition genes to PV have remained unidentified. Results: We studied the predisposition to PV by exome sequencing (three cases) in a Finnish PV family with four patients. The 12 shared variants (maximum allowed minor allele frequency G (p.Phe418Leu) in ZXDC, c.1931C > G (p.Pro644Arg) in ATN1, and c.701G > A (p.Arg234Gln) in LRRC3. We also observed a rare, predicted benign germline variant c.2912C > G (p.Ala971Gly) in BCORL1 in all four patients. Somatic mutations in BCORL1 have been reported in myeloid malignancies. We further screened the variants in eight PV patients in six other Finnish families, but no other carriers were found. Conclusions: Exome sequencing provides a powerful tool for the identification of novel variants, and understanding the familial predisposition of diseases. This is the first report on Finnish familial PV cases, and we identified three novel candidate variants that may predispose to the disease.