Browsing by Subject "Extracellular vesicles"

Sort by: Order: Results:

Now showing items 1-20 of 28
  • Garofalo, M.; Saari, H.; Somersalo, P.; Crescenti, D.; Kuryk, L.; Aksela, L.; Capasso, C.; Madetoja, M.; Koskinen, K.; Oksanen, T.; Mäkitie, A.; Jalasvuori, M.; Cerullo, V.; Ciana, P.; Yliperttula, M. (2018)
    Standard of care for cancer is commonly a combination of surgery with radiotherapy or chemoradiotherapy. However, in some advanced cancer patients this approach might still remaininefficient and may cause many side effects, including severe complications and even death. Oncolytic viruses exhibit different anti-cancer mechanisms compared with conventional therapies, allowing the possibility for improved effect in cancer therapy. Chemotherapeutics combined with oncolytic viruses exhibit stronger cytotoxic responses and oncolysis. Here, we have investigated the systemic delivery of the oncolytic adenovirus and paclitaxel encapsulated in extracellular vesicles (EV) formulation that, in vitro, significantly increased the transduction ratio and the infectious titer when compared with the virus and paclitaxel alone. We demonstrated that the obtained EV formulation reduced the in vivo tumor growth in animal xenograft model of human lung cancer. Indeed, we found that combined treatment of oncolytic adenovirus and paclitaxel encapsulated in EV has enhanced anticancer effects both in vitro and in vivo in lung cancer models. Transcriptomic comparison carried out on the explanted xenografts from the different treatment groups revealed that only 5.3% of the differentially expressed genes were overlapping indicating that a de novo genetic program is triggered by the presence of the encapsulated paclitaxel: this novel genetic program might be responsible of the observed enhanced antitumor effect. Our work provides a promising approach combining anticancer drugs and viral therapies by intravenous EV delivery as a strategy for the lung cancer treatment.
  • Valkonen, S.; Pol, E. van der; Böing, A.; Yuana, Y.; Yliperttula, M.; Nieuwland, R.; Laitinen, Saara; Siljander, P. R-M. (2017)
    Extracellular vesicles (EVs) mediate normal physiological homeostasis and pathological processes by facilitating intercellular communication. Research of EVs in basic science and clinical settings requires both methodological standardization and development of reference materials (RM). Here, we show insights and results of biological RM development for EV studies. We used a three-step approach to find and develop a biological RM. First, a literature search was done to find candidates for biological RMs. Second, a questionnaire was sent to EV researchers querying the preferences for RM and their use. Third, a biological RM was selected, developed, characterized, and evaluated. The responses to the survey demonstrated a clear and recognized need for RM optimized for the calibration of EV measurements. Based on the literature, naturally occurring and produced biological RM, such as virus particles and liposomes, were proposed as RM. However, none of these candidate RMs have properties completely matching those of EVs, such as size and refractive index distribution. Therefore, we evaluated the use of nanoerythrosomes (NanoE), vesicles produced from erythrocytes, as a potential biological RM. The strength of NanoE is their resemblance to EVs. Compared to the erythrocyte-derived EVs (eryEVs), NanoE have similar morphology, a similar refractive index (137), larger diameter (70% of the NanoE are over 200 nm), and increased positive staining for CD235a and lipids (Di-8-ANEPPS) (58% and 67% in NanoE vs. 21% and 45% in eryEVs, respectively). Altogether, our results highlight the general need to develop and validate new RM with similar physical and biochemical properties as EVs to standardize EV measurements between instruments and laboratories. (C) 2016 The Authors. Published by Elsevier B.V.
  • Joo, SeoJeong (Helsingin yliopisto, 2019)
    Although lung transplantation has become a routine procedure and is optimal therapy for patients with end-stage pulmonary diseases, the lifespan of lung allografts is still shorter than that of other organ transplants. As acute allograft rejection is one of the main risk factors for the development of chronic lung allograft dysfunction (CLAD) which threatens the long-term survival rate of the recipients, it is crucial to predict and diagnose acute lung allograft rejection. However, there are no specific methods established so far to predict acute rejection (AR). Even though the histopathological evaluation of transbronchial biopsies (TBBs) is used as the gold standard to ensure the diagnosis of AR, it is essential to discover novel biomarkers for AR to overcome the limitations of the TBB-based invasive diagnostics. Recently extracellular vesicles (EVs) got noticed as potential biomarkers in various fields of medicine based on the findings that they exist in high concentration in body fluids and deliver functional genetic molecules which can modulate gene expression in target cells. In that regard, this preliminary study was designed with two different approaches; a time-point analysis and a case analysis of rejection and non-rejection episodes to validate their potentials as diagnostic and predictive biomarkers for acute lung allograft rejection. To discover biomarkers, EV RNA was isolated from the plasma of four patients that was collected at different time points, and whole EV mRNA transcriptome sequencing was performed on the Illumina platform to obtain at least 15 million reads. The time-point analysis showed that the mRNA contents of EVs changed according to the time points and clinical presentations of the patients. At the same time, gene expression profiles showed that mRNA molecules inside the EVs change from innate immunity to adaptive immunity related signatures with the time after transplantation. Furthermore, the case analysis identified that EVs contain RNA molecules that are closely related to the migration of leukocytes and adaptive immune system during acute rejection episodes. In conclusion, the profiles of EV RNA may reflect the immune responses that are taking place in the recipient’s body. Therefore, it is speculated that EVs may play an essential role in the development of AR by transferring functional mRNA molecules to the allograft, immune cells, and endothelial cells. On that account, EV transcriptome profiling could be used as a diagnostic tool for AR in the future, as well as a therapeutic tool by engineering EVs to target specific genes that may be involved in the development of AR. Keywords: extracellular vesicles, lung transplantation, transplantation immunology, RNA sequencing, acute lung allograft rejection, biomarkers
  • Grillari, Johannes; Mäkitie, Riikka E.; Kocijan, Roland; Haschka, Judith; Vazquez, David Carro; Semmelrock, Elisabeth; Hackl, Matthias (2021)
    microRNAs have evolved as important regulators of multiple biological pathways essential for bone homeostasis, and microRNA research has furthered our understanding of the mechanisms underlying bone health and disease. This knowledge, together with the finding that active or passive release of microRNAs from cells into the extracellular space enables minimal-invasive detection in biofluids (circulating miRNAs), motivated researchers to explore microRNAs as biomarkers in several pathologic conditions, including bone diseases. Thus, exploratory studies in cohorts representing different types of bone diseases have been performed. In this review, we first summarize important molecular basics of microRNA function and release and provide recommendations for best (pre-)analytical practices and documentation standards for circulating microRNA research required for generating high quality data and ensuring reproducibility of results. Secondly, we review how the genesis of bone-derived circulating microRNAs via release from osteoblasts and osteoclasts could contribute to the communication between these cells. Lastly, we summarize evidence from clinical research studies that have investigated the clinical utility of microRNAs as biomarkers in musculoskeletal disorders. While previous reviews have mainly focused on diagnosis of primary osteoporosis, we have also included studies exploring the utility of circulating microRNAs in monitoring anti-osteoporotic treatment and for diagnosis of other types of bone diseases, such as diabetic osteopathy, bone degradation in inflammatory diseases, and monogenetic bone diseases.
  • Lazaro-Ibanez, Elisa; Lunavat, Taral R.; Jang, Su Chul; Escobedo-Lucea, Carmen; Oliver-De La Cruz, Jorge; Siljander, Pia; Lotvall, Jan; Yliperttula, Marjo (2017)
    Background: Multiple types of extracellular vesicles (EVs), including microvesicles (MVs) and exosomes (EXOs), are released by all cells constituting part of the cellular EV secretome. The bioactive cargo of EVs can be shuffled between cells and consists of lipids, metabolites, proteins, and nucleic acids, including multiple RNA species from non-coding RNAs to messenger RNAs (mRNAs). In this study, we hypothesized that the mRNA cargo of EVs could differ based on the EV cellular origin and subpopulation analyzed. Methods: We isolated MVs and EXOs from PC-3 and LNCaP prostate cancer cells by differential centrifugation and compared them to EVs derived from the benign PNT2 prostate cells. The relative mRNA levels of 84 prostate cancer-related genes were investigated and validated using quantitative reverse transcription PCR arrays. Results: Based on the mRNA abundance, MVs rather than EXOs were enriched in the analyzed transcripts, providing a snapshot of the tumor transcriptome. LNCaP MVs specifically contained significantly increased mRNA levels of NK3 Homeobox 1 (NKX3-1), transmembrane protease serine 2 (TMPRSS2), and tumor protein 53 (TP53) genes, whereas PC-3 MVs carried increased mRNA levels of several genes including, caveolin-2 (CAV2), glutathione S-transferase pi 1 (GSTP1), pescadillo ribosomal biogenesis factor 1 (PES1), calmodulin regulated spectrin associated protein 1 (CAMSAP1), zinc-finger protein 185 (ZNF185), and others compared to PNT2 MVs. Additionally, ETS variant 1 (ETV1) and fatty acid synthase (FASN) mRNAs identified in LNCaP-and PC-3-derived MVs highly correlated with prostate cancer progression. Conclusions: Our study provides new understandings of the variability of the mRNA cargo of MVs and EXOs from different cell lines despite same cancer origin, which is essential to better understand the the proportion of the cell transcriptome that can be detected within EVs and to evaluate their role in disease diagnosis.
  • Lázaro Ibáñez, Elisa; Lunavat, Taral R; Jang, Su C; Escobedo-Lucea, Carmen; Oliver-De La Cruz, Jorge; Siljander, Pia; Lötvall, Jan; Yliperttula, Marjo (BioMed Central, 2017)
    Abstract Background Multiple types of extracellular vesicles (EVs), including microvesicles (MVs) and exosomes (EXOs), are released by all cells constituting part of the cellular EV secretome. The bioactive cargo of EVs can be shuffled between cells and consists of lipids, metabolites, proteins, and nucleic acids, including multiple RNA species from non-coding RNAs to messenger RNAs (mRNAs). In this study, we hypothesized that the mRNA cargo of EVs could differ based on the EV cellular origin and subpopulation analyzed. Methods We isolated MVs and EXOs from PC-3 and LNCaP prostate cancer cells by differential centrifugation and compared them to EVs derived from the benign PNT2 prostate cells. The relative mRNA levels of 84 prostate cancer-related genes were investigated and validated using quantitative reverse transcription PCR arrays. Results Based on the mRNA abundance, MVs rather than EXOs were enriched in the analyzed transcripts, providing a snapshot of the tumor transcriptome. LNCaP MVs specifically contained significantly increased mRNA levels of NK3 Homeobox 1 (NKX3-1), transmembrane protease serine 2 (TMPRSS2), and tumor protein 53 (TP53) genes, whereas PC-3 MVs carried increased mRNA levels of several genes including, caveolin-2 (CAV2), glutathione S-transferase pi 1 (GSTP1), pescadillo ribosomal biogenesis factor 1 (PES1), calmodulin regulated spectrin associated protein 1 (CAMSAP1), zinc-finger protein 185 (ZNF185), and others compared to PNT2 MVs. Additionally, ETS variant 1 (ETV1) and fatty acid synthase (FASN) mRNAs identified in LNCaP- and PC-3- derived MVs highly correlated with prostate cancer progression. Conclusions Our study provides new understandings of the variability of the mRNA cargo of MVs and EXOs from different cell lines despite same cancer origin, which is essential to better understand the the proportion of the cell transcriptome that can be detected within EVs and to evaluate their role in disease diagnosis.
  • Morani, Marco; Duc Mai, Thanh; Krupova, Zuzana; Defrenaix, Pierre; Multia, Evgen; Riekkola, Marja-Liisa; Taverna, Myriam (2020)
    This work reports on the development of the first capillary electrophoresis methodology for the elucidation of extracellular vesicles' (EVs) electrokinetic distributions. The approach is based on capillary electrophoresis coupled with laser-induced fluorescent (LIF) detection for the identification and quantification of EVs after their isolation. Sensitive detection of these nanometric entities was possible thanks to an 'inorganic-species-free' background electrolyte. This electrolyte was made up of weakly charged molecules at very high concentrations to stabilize EVs, and an intra-membrane labelling approach was used to prevent EV morphology modification. The limit of detection for EVs achieved using the developed CE-LIF method reached 8 x 10(9) EV/mL, whereas the calibration curve was acquired from 1.22 x 10(10) to 1.20 x 10(11) EV/mL. The CE-LIF approach was applied to provide the electrokinetic distributions of various EVs of animal and human origins, and visualize different EV subpopulations from our recently developed high-yield EV isolation method. (C) 2020 Elsevier B.V. All rights reserved.
  • Endzelins, Edgars; Abols, Arturs; Buss, Arturs; Zandberga, Elina; Palviainen, Mari Johanna; Siljander, Pia Riitta-Maria; Line, Aija (2018)
    Background/Aim: Tumor-secreted extracellular vesicles (EVs) play an important role as mediators of intercellular communication. Hypoxia is a common feature of solid tumors frequently associated with an aggressive clinical behavior. This study aimed to gain a deeper understanding into the functions of EVs in intercellular communication between primary and metastatic cancer cells under hypoxic conditions. Materials and Methods: EVs were isolated from two isogenic colorectal cancer (CRC) cell lines SW480 and SW620 cultured under normoxic and hypoxic conditions. Their uptake and effects in SW480 and SW620 cells were studied using EV uptake, proliferation, spheroid-formation, wound healing and invasion assays. Results: Our data showed that hypoxia enhanced the release of EVs from CRC cells in a Hypoxia Induced Factor (HIF)-1-dependent manner. Hypoxic EVs were taken up by CRC cells more efficiently than normoxic EVs. Hypoxic EVs stimulated motility, invasiveness and sternness of primary tumour-derived SW480 cells, whereas they had a little effect on metastasis-derived SW620 cells. Conclusion: Hypoxic colorectal cancer-derived EVs confer aggressiveness and invasiveness to hypoxia-naive cancer cells.
  • Saari, Heikki; Turunen, Tiia; Lohmus, Andres; Turunen, Mikko; Jalasvuori, Matti; Butcher, Sarah J.; Yla-Herttuala, Seppo; Viitala, Tapani; Cerullo, Vincenzo; Siljander, Pia R. M.; Yliperttula, Marjo (2020)
    Extracellular vesicles (EVs) have been showcased as auspicious candidates for delivering therapeutic cargo, including oncolytic viruses for cancer treatment. Delivery of oncolytic viruses in EVs could provide considerable advantages, hiding the viruses from the immune system and providing alternative entry pathways into cancer cells. Here we describe the formation and viral cargo of EVs secreted by cancer cells infected with an oncolytic adenovirus (IEVs, infected cell-derived EVs) as a function of time after infection. IEVs were secreted already before the lytic release of virions and their structure resembled normally secreted EVs, suggesting that they were not just apoptotic fragments of infected cells. IEVs were able to carry the viral genome and induce infection in other cancer cells. As such, the role of EVs in the life cycle of adenoviruses may be an important part of a successful infection and may also be harnessed for cancer- and gene therapy.
  • Multia, Evgen; Tear, Crystal Jing Ying; Palviainen, Mari; Siljander, Pia R-M; Riekkola, Marja-Liisa (2019)
    A new, fast and selective immunoaffinity chromatographic method including a methacrylate-based convective interaction media (CIM (R)) disk monolithic column, immobilized with anti-human CD61 antibody, was developed for the isolation of CD61-containing platelet-derived extracellular vesicles (EVs) from plasma. The isolated EVs were detected and size characterized by asymmetrical flow field-flow fractionation (AsFlFFF) with multi-angle light-scattering (MALS) and dynamic light-scattering (DLS) detection, and further confirmed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). The mean size of platelet-derived EV isolates from the anti-CD61 CIM (R) disk monolithic column were 174 nm (SD 60 nm) based on the NTA results. These results indicated a successful isolation of platelet-derived EVs, which was confirmed by Western blotting the isolates against the EV-specific markers CD9 and TSG101 together with transmission electron microscopy. Additional elucidation of MALS and DLS data provided detailed information of the size distribution of the isolated fractions, confirming the successful isolation of also small platelet-derived EVs ranging from 30 to 130 nm based on the hydrodynamic radii. The isolation procedure took only 19 min and the time can be even further decreased by increasing the flow rate. The same immunoaffinity chromatographic procedure, following AsFlFFF allowed also the isolation and characterization of platelet-derived EVs from plasma in under 60 min. Since it is possible to regenerate the anti-CD61 disk for multiple uses, the methodology developed in this study provides a viable substitution and addition to the conventional EV isolation procedures. (C) 2019 Elsevier B.V. All rights reserved.
  • Saari, H.; Lisitsyna, Ekaterina S.; Rautaniemi, K.; Rojalin, T.; Niemi, L.; Nivaro, O.; Laaksonen, T.; Yliperttula, M.; Vuorimaa-Laukkanen, E. (2018)
    In response to physiological and artificial stimuli, cells generate nano-scale extracellular vesicles (EVs) by encapsulating biomolecules in plasma membrane-derived phospholipid envelopes. These vesicles are released to bodily fluids, hence acting as powerful endogenous mediators in intercellular signaling. EVs provide a compelling alternative for biomarker discovery and targeted drug delivery, but their kinetics and dynamics while interacting with living cells are poorly understood. Here we introduce a novel method, fluorescence lifetime imaging microscopy (FLIM) to investigate these interaction attributes. By FLIM, we show distinct cellular uptake mechanisms of different EV subtypes, exosomes and microvesicles, loaded with anti-cancer agent, paclitaxel. We demonstrate differences in intracellular behavior and drug release profiles of paclitaxel-containing EVs. Exosomes seem to deliver the drug mostly by endocytosis while microvesicles enter the cells by both endocytosis and fusion with cell membrane. This research offers a new real-time method to investigate EV kinetics with living cells, and it is a potential advancement to complement the existing techniques. The findings of this study improve the current knowledge in exploiting EVs as next-generation targeted drug delivery systems.
  • Arasu, Uma Thanigai; Deen, Ashik Jawahar; Pasonen-Seppänen, Sanna; Heikkinen, Sami; Lalowski, Maciej; Kärnä, Riikka; Härkönen, Kai; Mäkinen, Petri; Lazaro-Ibañez, Elisa; Siljander, Pia R-M; Oikari, Sanna; Levonen, Anna-Liisa; Rilla, Kirsi (2020)
    Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.
  • Dissanayake, Keerthie; Nõmm, Monika; Lättekivi, Freddy; Ressaissi, Yosra; Godakumara, Kasun; Lavrits, Arina; Midekessa, Getnet; Viil, Janeli; Bæk, Rikke; Jørgensen, Malene Møller; Bhattacharjee, Sourav; Andronowska, Aneta; Salumets, Andres; Jaakma, Ülle; Fazeli, Alireza (2020)
    Extracellular vesicles (EVs) are membrane-bound biological nanoparticles (NPs) and have gained wide attention as potential biomarkers. We aimed to isolate and characterize EVs from media conditioned by individually cultured preimplantation bovine embryos and to assess their relationship with embryo quality. Presumptive zygotes were cultured individually in 60 μl droplets of culture media, and 50 μl of media were collected from the droplets either on day 2, 5 or 8 post-fertilization. After sampling, the embryo cultures were continued in the remaining media until day 8, and the embryo development was evaluated at day 2 (cleavage), day 5 (morula stage) and day 8 (blastocyst stage). EVs were isolated using qEVsingle® columns and characterized. Based on EV Array, EVs isolated from embryo conditioned media were strongly positive for EV-markers CD9 and CD81 and weakly positive for CD63 and Alix among others. They had a cup-like shape typical to EVs as analyzed by transmission electron microscopy and spherical shape in scanning electron microscopy, and hence regarded as EVs. However, the NPs isolated from control media were negative for EV markers. Based on nanoparticle tracking analysis, at day 2, the mean concentration of EVs isolated from media conditioned by embryos that degenerated after cleaving (8.25 × 108/ml) was higher compared to that of embryos that prospectively developed to blastocysts (5.86 × 108/ml, p 
  • Zini, Jacopo; Saari, Heikki; Ciana, Paolo; Viitala, Tapani; Lohmus, Andres; Saarinen, Jukka; Yliperttula, Marjo (2022)
    Extracellular vesicles (EVs) are a complex and heterogeneous population of nanoparticles involved in cell-to-cell communication. Recently, numerous studies have indicated the potential of EVs as therapeutic agents, drug carriers and diagnostic tools. However, the results of these studies are often difficult to evaluate, since different characterization methods are used to assess the purity, physical and biochemical characteristics of the EV samples. In this study, we compared four methods for the EV sample characterization and purity assessment: i) the particle-to-protein ratio based on particle analyses with nanoparticle tracking and protein concentration by bicinchoninic acid assay, ii) Western Blot analysis for specific EV biomarkers, iii) two spectroscopic lipid-to protein ratios by either the attenuated total reflection Fourier transform infrared (ATR-FTIR) or Raman spectroscopy. The results confirm the value of Raman and ATR-FTIR spectroscopy as robust, fast and operator independent tools that require only a few microliters of EV sample. We propose that the spectroscopic lipid-to protein (Li/Pr) ratios are reliable parameters for the purity assessment of EV preparations. Moreover, apart from determining protein concentrations, we show that ATR-FTIR spectroscopy can also be used for indirect measurements of EV concentrations. Nevertheless, the Li/Pr ratios do not represent full characterization of the EV preparations. For a complete characterization of selected EV preparations, we recommend also additional use of particle size distribution and EV biomarker analysis.
  • Koponen, Annika; Kerkelä, Erja; Rojalin, Tatu; Lazaro-Ibanez, Elisa; Suutari, Teemu; Saari, Heikki O.; Siljander, Pia; Yliperttula, Marjo; Laitinen, Saara; Viitala, Tapani (2020)
    Extracellular vesicles (EVs) have the ability to function as molecular vehicles and could therefore be harnessed to deliver drugs to target cells in diseases such as cancer. The composition of EVs determines their function as well as their interactions with cells, which consequently affects the cell uptake efficacy of EVs. In this study, we present two novel label-free approaches for studying EVs; characterization of EV composition by time-gated surface-enhanced Raman spectroscopy (TG-SERS) and monitoring the kinetics and amount of cellular uptake of EVs by surface plasmon resonance (SPR) in real-time. Using these methods, we characterized the most abundant EVs of human blood, red blood cell (RBC)- and platelet (PLT)-derived EVs and studied their interactions with prostate cancer cells. Complementary studies were performed with nanoparticle tracking analysis for concentration and size determinations of EVs, zeta potential measurements for surface charge analysis, and fluorophore-based confocal imaging and flow cytometry to confirm EV uptake. Our results revealed distinct biochemical features between the studied EVs and demonstrated that PLT-derived EVs were more efficiently internalized by PC-3 cells than RBC-derived EVs. The two novel label-free techniques introduced in this study were found to efficiently complement conventional techniques and paves the way for further use of TG-SERS and SPR in EV studies.
  • Dichlberger, Andrea; Zhou, Kecheng; Bäck, Nils; Nyholm, Thomas; Backman, Anders; Mattjus, Peter; Ikonen, Elina; Blom, Tomas (2021)
    Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is a four-membrane spanning ceramide interacting protein that regulates mTORC1 signaling. Here, we show that LAPTM4B is sorted into intraluminal vesicles (ILVs) of multivesicular endosomes (MVEs) and released in small extracellular vesicles (sEVs) into conditioned cell culture medium and human urine. Efficient sorting of LAPTM4B into ILV membranes depends on its third transmembrane domain containing a sphingolipid interaction motif (SLim). Unbiased lipidomic analysis reveals a strong enrichment of glycosphingolipids in sEVs secreted from LAPTM4B knockout cells and from cells expressing a SLim-deficient LAPTM4B mutant. The altered sphingolipid profile is accompanied by a distinct SLim-dependent co-modulation of ether lipid species. The changes in the lipid composition of sEVs derived from LAPTM4B knockout cells is reflected by an increased stability of membrane nanodomains of sEVs. These results identify LAPTM4B as a determinant of the glycosphingolipid profile and membrane properties of sEVs.
  • Mattila, N.; Hisada, Y.; Przybyla, B.; Posma, J.; Jouppila, A.; Haglund, C.; Seppänen, H.; Mackman, N.; Lassila, R. (2021)
    Background: Pancreatic ductal adenocarcinoma (PDAC) is associated with a hypercoagulable state and high mortality. Increases in the plasma levels of tumor marker carbohydrate antigen (CA) 19-9 are used in diagnosis and follow-up but have also been reported to precede venous thromboembolism (VTE). Aims: We examined the association between CA 19-9 and thrombin generation (TG) in plasma from PDAC patients, as well as their association with coagulation biomarkers prior to pancreatic surgery. In addition, we determined the effect of commercial sources of CA 19-9 on TG. Methods: We collected plasma from 58 treatment-naive PDAC patients without any signs of VTE. We measured levels of CA 19-9, FVIII, fibrinogen, D-dimer, antithrombin and extracellular vesicle (EV) tissue factor (TF) activity and TG using a Calibrated Automated Thrombogram (CAT). The effect of different commercial sources of CA 19-9 on TG in Standard Human Plasma (SHP) was also studied. Results: Patient plasma samples were divided into 4 preoperative groups based on the level of CA 19-9: none <2, low = 3200, high = 201-1000, and very high > 1000 U/mL. CA 19-9 levels were associated with several of the TG parameters, including endogenous thrombin potential, peak, and time to peak. CA 19-9 did not associate with any of the coagulation biomarkers. Spiking of SHP with CA 19-9 increased TG but this was decreased by an antiTF antibody. Conclusions: CA 19-9 was associated with TG in patients prior to any pancreatic cancer treatments or signs of VTE. Some commercial sources of CA 19-9 enhanced TG in SHP seemingly due to contaminating TF.
  • Brunello, Cecilia A.; Merezhko, Maria; Uronen, Riikka-Liisa; Huttunen, Henri J. (2020)
    Accumulation of misfolded and aggregated forms of tau protein in the brain is a neuropathological hallmark of tauopathies, such as Alzheimer’s disease and frontotemporal lobar degeneration. Tau aggregates have the ability to transfer from one cell to another and to induce templated misfolding and aggregation of healthy tau molecules in previously healthy cells, thereby propagating tau pathology across different brain areas in a prion-like manner. The molecular mechanisms involved in cell-to-cell transfer of tau aggregates are diverse, not mutually exclusive and only partially understood. Intracellular accumulation of misfolded tau induces several mechanisms that aim to reduce the cellular burden of aggregated proteins and also promote secretion of tau aggregates. However, tau may also be released from cells physiologically unrelated to protein aggregation. Tau secretion involves multiple vesicular and non-vesicle-mediated pathways, including secretion directly through the plasma membrane. Consequently, extracellular tau can be found in various forms, both as a free protein and in vesicles, such as exosomes and ectosomes. Once in the extracellular space, tau aggregates can be internalized by neighboring cells, both neurons and glial cells, via endocytic, pinocytic and phagocytic mechanisms. Importantly, accumulating evidence suggests that prion-like propagation of misfolding protein pathology could provide a general mechanism for disease progression in tauopathies and other related neurodegenerative diseases. Here, we review the recent literature on cellular mechanisms involved in cell-to-cell transfer of tau, with a particular focus in tau secretion.
  • Saari, Heikki; Lazaro Ibanez, Elisa; Viitala, Tapani; Vuorimaa-Laukkanen, Elina; Siljander, Pia; Yliperttula, Marjo (2015)
    Background: Extracellular vesicles (EVs) are naturally occurring membrane particles that mediate intercellular communication by delivering molecular information between cells. In this study, we investigated the effectiveness of two different populations of EVs (microvesicle- and exosome-enriched) as carriers of Paclitaxel to autologous prostate cancer cells. Methods: EVs were isolated from LNCaP- and PC-3 prostate cancer cell cultures using differential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and Western blot. The uptake of microvesicles and exosomes by the autologous prostate cancer cells was assessed by flow cytometry and confocal microscopy. The EVs were loaded with Paclitaxel and the effectiveness of EV-mediated drug delivery was assessed with viability assays. The distribution of EVs and EV-delivered Paclitaxel in cells was inspected by confocal microscopy. Results: Our main finding was that the loading of Paclitaxel to autologous prostate cancer cell-derived EVs increased its cytotoxic effect. This capacity was independent of the EV population and the cell line tested. Although the EVs without the drug increased cancer cell viability, the net effect of enhanced cytotoxicity remained. Both EV populations delivered Paclitaxel to the recipient cells through endocytosis, leading to the release of the drug from within the cells. The removal of EV surface proteins did not affect exosomes, while the drug delivery mediated by microvesicles was partially inhibited. Conclusions: Cancer cell-derived EVs can be used as effective carriers of Paclitaxel to their parental cells, bringing the drug into the cells through an endocytic pathway and increasing its cytotoxicity. However, due to the increased cell viability, the use of cancer cell-derived EVs must be further investigated before any clinical applications can be designed. (C) 2015 The Authors. Published by Elsevier B.V.
  • Liangsupree, Thanaporn; Multia, Evgen; Riekkola, Marja-Liisa (2021)
    Extracellular vesicles (EVs) are heterogenous membrane-bound vesicles released from various origins. EVs play a crucial role in cellular communication and mediate several physiological and pathological processes, highlighting their potential therapeutic and diagnostic applications. Due to the rapid increase in interests and needs to elucidate EV properties and functions, numerous isolation and separation approaches for EVs have been developed to overcome limitations of conventional techniques, such as ultracentrifugation. This review focuses on recently emerging and modern EV isolation and separation techniques, including size-, charge-, and affinity-based techniques while excluding ultracentrifugation and precipitation-based techniques due to their multiple limitations. The advantages and drawbacks of each technique are discussed together with insights into their applications. Emerging approaches all share similar features in terms of being time-effective, easy-to-operate, and capable of providing EVs with suitable and desirable purity and integrity for applications of interest. Combination and hyphenation of techniques have been used for EV isolation and separation to yield EVs with the best quality. The most recent development using an automated on-line system including selective affinity-based trapping unit and asymmetrical flow field-flow fractionation allows reliable isolation and fractionation of EV subpopulations from human plasma. (C) 2020 The Author(s). Published by Elsevier B.V.