Browsing by Subject "FEMALE"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Murtola, Tiina; Malinen, Jarmo; Geneid, Ahmed; Alku, Paavo (2019)
    A multichannel dataset comprising high-speed videoendoscopy images, and electroglottography and free-field microphone signals, was used to investigate phonation onsets in vowel production. Use of the multichannel data enabled simultaneous analysis of the two main aspects of phonation, glottal area, extracted from the high-speed videoendoscopy images, and glottal flow, estimated from the microphone signal using glottal inverse filtering. Pulse-wise parameterization of the glottal area and glottal flow indicate that there is no single dominant way to initiate quasi-stable phonation. The trajectories of fundamental frequency and normalized amplitude quotient, extracted from glottal area and estimated flow, may differ markedly during onsets. The location and steepness of the amplitude envelopes of the two signals were observed to be closely related, and quantitative analysis supported the hypothesis that glottal area and flow do not carry essentially different amplitude information during vowel onsets. Linear models were used to predict the phonation onset times from the characteristics of the subsequent steady phonation. The phonation onset time of glottal area was found to have good predictability from a combination of the fundamental frequency and the normalized amplitude quotient of the glottal flow, as well as the gender of the speaker. For the phonation onset time of glottal flow, the best linear model was obtained using the fundamental frequency and the normalized amplitude quotient of the glottal flow as predictors.
  • Jaatinen, Kim; Moller, Anders P.; Ost, Markus (2019)
    The direction of predator-mediated selection on brain size is debated. However, the speed and the accuracy of performing a task cannot be simultaneously maximized. Large-brained individuals may be predisposed to accurate but slow decision-making, beneficial under high predation risk, but costly under low risk. This creates the possibility of temporally fluctuating selection on brain size depending on overall predation risk. We test this idea in nesting wild eider females (Somateria mollissima), in which head volume is tightly linked to brain mass (r(2) = 0.73). We determined how female relative head volume relates to survival, and characterized the seasonal timing of predation. Previous work suggests that relatively large-brained and small-brained females make slow versus fast nest-site decisions, respectively, and that predation events occur seasonally earlier when predation is severe. Large-brained, late-breeding females may therefore have higher survival during high-predation years, but lower survival during safe years, assuming that predation disproportionately affects late breeders in such years. Relatively large-headed females outsurvived smaller-headed females during dangerous years, whereas the opposite was true in safer years. Predation events occurred relatively later during safe years. Fluctuations in the direction of survival selection on relative brain size may therefore arise due to brain-size dependent breeding phenology.
  • Narusyte, Jurgita; Ropponen, Annina; Silventoinen, Karri; Alexanderson, Kristina; Kaprio, Jaakko; Samuelsson, Asa; Svedberg, Pia (2011)
  • Adang, Laura A.; Pizzino, Amy; Malhotra, Alka; Dubbs, Holly; Williams, Catherine; Sherbini, Omar; Anttonen, Anna-Kaisa; Lesca, Gaetan; Linnankivi, Tarja; Laurencin, Chloé; Milh, Matthieu; Perrine, Charles; Schaaf, Christian P.; Poulat, Anne-Lise; Ville, Dorothee; Hagelstrom, Tanner; Perry, Denise L.; Taft, Ryan J.; Goldstein, Amy; Vossough, Arastoo; Helbig, Ingo; Vanderver, Adeline (2020)
    Background Mutations in the X-linked gene WDR45 cause neurodegeneration with brain iron accumulation type 5 (NBIA5). Global developmental delay is seen at an early age with a slow progression to dystonia, parkinsonism, and dementia due to progressive iron accumulation in the brain. Methodology We present 17 new cases and reviewed 106 reported cases of NBIA5. Detailed information related to developmental history and key time to event measures was collected. Results Within this cohort, there were 19 males. Most individuals were molecularly diagnosed by whole exome testing. Overall 10 novel variants were identified across 11 subjects. All individuals were affected by developmental delay, most prominently in verbal skills. Most individuals experienced a decline in motor and cognitive skills. While most individuals were affected by seizures, the spectrum ranged from provoked seizures to intractable epilepsy. The imaging findings varied as well, often evolving over time. The classic iron accumulation in the globus pallidus and substantia nigra was noted half of our cohort and was associated with an older age of image acquisition, while myelination abnormalities were associated with a younger age. Conclusions WDR45 is a progressive and evolving disorder, which is often delayed in diagnosis. Developmental delay and seizures predominate early childhood, followed by a progressive decline of neurologic function. There is variable expressivity in the clinical phenotypes of individuals with WDR45 mutations, suggesting that this gene should be considered in the diagnostic evaluation of children with myelination abnormalities, iron deposition, developmental delay, and epilepsy depending on the age at evaluation.
  • Dicko, Alassane; Brown, Joelle M.; Diawara, Halimatou; Baber, Ibrahima; Mahamar, Almahamoudou; Soumare, Harouna M.; Sanogo, Koualy; Koita, Fanta; Keita, Sekouba; Traore, Sekou F.; Chen, Ingrid; Poirot, Eugenie; Hwang, Jimee; McCulloch, Charles; Lanke, Kjerstin; Pett, Helmi; Niemi, Mikko; Nosten, Francois; Bousema, Tevn; Gosling, Roly (2016)
    Background Single low doses of primaquine, when added to artemisinin-based combination therapy, might prevent transmission of Plasmodium falciparum malaria to mosquitoes. We aimed to establish the activity and safety of four low doses of primaquine combined with dihydroartemisinin-piperaquine in male patients in Mali. Methods In this phase 2, single-blind, dose-ranging, adaptive randomised trial, we enrolled boys and men with uncomplicated P falciparum malaria at the Malaria Research and Training Centre (MRTC) field site in Ouelessebougou, Mali. All participants were confirmed positive carriers of gametocytes through microscopy and had normal function of glucose-6-phosphate dehydrogenase (G6PD) on colorimetric quantification In the first phase, participants were randomly assigned (1:1:1) to one of three primaquine doses: 0 mg/kg (control), 0.125 mg/kg, and 0.5 mg/kg. Randomisation was done with a computer-generated randomisation list (in block sizes of six) and concealed with sealed, opaque envelopes. In the second phase, different participants were sequentially assigned (1:1) to 0.25 mg/kg primaquine or 0.0625 mg/kg primaquine. Primaquine tablets were dissolved into a solution and administered orally in a single dose. Participants were also given a 3 day course of dihydroartemisinin-piperaquine, administered by weight (320 mg dihydroartemisinin and 40 mg piperaquine per tablet). Outcome assessors were masked to treatment allocation, but participants were permitted to find out group assignment. Infectivity was assessed through membrane feeding assays, which were optimised through the beginning part of phase one. The primary efficacy endpoint was the mean within-person percentage change in mosquito infectivity 2 days after primaquine treatment in participants who completed the study after optimisation of the infectivity assay, had both a pre-treatment infectivity measurement and at least one follow-up infectivity measurement, and who were given the correct primaquine dose. The safety endpoint was the mean within-person change in haemoglobin concentration during 28 days of study follow-up in participants with at least one follow-up visit. This study is registered with ClinicalTrials.gov, number NCT01743820. Findings Between Jan 2,2013, and Nov 27,2014, we enrolled 81 participants. In the primary analysis sample (n=71), participants in the 0.25 mg/kg primaquine dose group (n=15) and 0.5 mg/kg primaquine dose group (n=14) had significantly lower mean within-person reductions in infectivity at day 2-92.6% (95% CI 78.3-100; p=0.0014) for the 0.25 mg/kg group; and 75.0% (45.7-100; p=0.014) for the 0.5 mg/kg primaquine group compared with those in the control group (n=14; 11.3% [-27.4 to 50.0]). Reductions were not significantly different from control for participants assigned to the 0.0625 mg/kg dose group (n=16; 41.9% [1.4-82.5]; p=0.16) and the 0.125 mg/kg dose group (n=12; 54.9% [13.4-96.3]; p=0.096). No clinically meaningful or statistically significant drops in haemoglobin were recorded in any individual in the haemoglobin analysis (n=70) during follow-up. No serious adverse events were reported and adverse events did not differ between treatment groups. Interpretation A single dose of 0.25 mg/kg primaquine, given alongside dihydroartemisinin-piperaquine, was safe and efficacious for the prevention of P falciparum malaria transmission in boys and men who are not deficient in G6PD. Future studies should assess the safety of single-dose primaquine in G6PD-deficient individuals to define the therapeutic range of primaquine to enable the safe roll-out of community interventions with primaquine.