Browsing by Subject "FIELDS"

Sort by: Order: Results:

Now showing items 1-15 of 15
  • Nikbakhsh, S.; Tanskanen, E. I.; Käpylä, M. J.; Hackman, T. (2019)
    Aims. Our aim is to examine the solar cycle variability of magnetically simple and complex active region. Methods. We studied simple (alpha and beta) and complex (beta gamma and beta gamma delta) active regions based on the Mount Wilson magnetic classification by applying our newly developed daily approach. We analyzed the daily number of the simple active regions (SARs) and compared that to the abundance of the complex active regions (CARs) over the entire solar cycle 23 and cycle 24 until December 2018. Results. We show that CARs evolve differently over the solar cycle from SARs. The time evolution of SARs and CARs on different hemispheres also shows differences, even though on average their latitudinal distributions are shown to be similar. The time evolution of SARs closely follows that of the sunspot number, and their maximum abundance was observed to occur during the early maximum phase, while that of the CARs was seen roughly two years later. We furthermore found that the peak of CARs was reached before the latitudinal width of the activity band starts to decease. Conclusion. Our results suggest that the active region formation process is a competition between the large-scale dynamo (LSD) and the small-scale dynamo (SSD) near the surface, the former varying cyclically and the latter being independent of the solar cycle. During solar maximum, LSD is dominant, giving a preference to SARs, while during the declining phase the relative role of SSD increases. Therefore, a preference for CARs is seen due to the influence of the SSD on the emerging flux.
  • Afonso, Marco Martins; Muratore-Ginanneschi, Paolo; Gama, Silvio M. A.; Mazzino, Andrea (2018)
    We investigate the large-scale transport properties of quasi-neutrally-buoyant inertial particles carried by incompressible zero-mean periodic or steady ergodic flows. We show howto compute large-scale indicators such as the inertial-particle terminal velocity and eddy diffusivity from first principles in a perturbative expansion around the limit of added-mass factor close to unity. Physically, this limit corresponds to the case where the mass density of the particles is constant and close in value to the mass density of the fluid, which is also constant. Our approach differs from the usual over-damped expansion inasmuch as we do not assume a separation of time scales between thermalization and small-scale convection effects. For a general flow in the class of incompressible zero-mean periodic velocity fields, we derive closed-form cell equations for the auxiliary quantities determining the terminal velocity and effective diffusivity. In the special case of parallel flows these equations admit explicit analytic solution. We use parallel flows to show that our approach sheds light onto the behavior of terminal velocity and effective diffusivity for Stokes numbers of the order of unity.
  • Price, Daniel; Pomoell, Jens; Kilpua, Emilia (2020)
    Aims. We present a detailed examination of the magnetic evolution of AR 12473 using time-dependent, data-driven magnetofrictional modelling.Methods. We used maps of the photospheric electric field inverted from vector magnetogram observations, obtained by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO), to drive our fully time-dependent, data-driven magnetofrictional model. Our modelled field was directly compared to extreme ultraviolet observations from the Atmospheric Imaging Assembly, also onboard SDO. Metrics were also computed to provide a quantitative analysis of the evolution of the magnetic field.Results. The flux rope associated with the eruption on 28 December 2015 from AR 12473 was reproduced by the simulation and found to have erupted due to a torus instability.
  • Holopainen, Jani; Toppinen, Anne; Perttula, Sini (2015)
    The aim of this explorative study is to find out how the EU Timber Regulation (EUTR) has affected the forest and chain of custody (CoC) certification strategies and practices among the Finnish wood industry companies. We are especially interested to find out whether more integrated strategies and collaborative networks have emerged for enhanced communications throughout the industry value chains. This qualitative interview study included both EUTR ex ante and ex post analysis, based on three rounds of managerial and expert interviews during 2011-2015. The results indicate that the EUTR appears to have enforced the supplier-client relations in the Finnish wood industry value chain. The sector still lacks integrated communication strategies with better understanding of customer and stakeholder values, which could contribute to more cohesive communication and marketing efforts reflecting the values of the whole industry. The certification practices are fairly spontaneously implemented following the traditional industry culture, which is not supportive of innovations and gaining competitive advantages in the broader material markets. Furthermore, the existence of two parallel forest certificates (Forest Stewardship Council (FSC) and Programme for the Endorsement of Forest Certification (PEFC)) seems to hamper the effective communication and building of an image of sustainable wood products among customers and end consumers, groups that are also exposed to more general environmental communication, e.g., in the building material markets.
  • Cai, Zongping; Sun, Yan; Deng, Yanghong; Zheng, Xiaojie; Sun, Shuiyu; Romantschuk, Martin; Sinkkonen, Aki (2021)
    Electrokinetic (EK) remediation has been widely studied at laboratory scales. However, field-scale research is far less. In this study, a 14-day EK remediation was carried out, in a field pilot (4 m2) test and a full-scale (200 m2) application for the first time, in a cadmium (Cd) contaminated paddy agricultural field near a mining area. A low voltage of 20 V was applied at both scales; voltage gradient was 20 V m & minus;1 and 4 V m & minus;1 at the pilot and full scales, respectively. Samples were taken from near the anode and cathode, and in the middle of the electric field, in the soil layers 0-10 cm, 10-20 cm, and 40-50 cm. After the EK remediation, a significant portion of the total Cd was removed in all the layers at the pilot scale, by 87%, 72%, and 54% from the top down, but only in the 0-10 cm layer at the full scale by 74%. As for the plant available (exchangeable and soluble) Cd, significant removal (64%) was only observed in the 0-10 cm layer at the pilot scale. The percentage reduction of the electrical conductivity and removal efficiency of the total Cd was higher near the anode than the cathode. The soil pH was elevated near the cathode but stayed below pH 6 due to the sufficient supply of lactic acid. After the EK remediation, the concentration of the total Cd dropped below the hazard threshold, i.e. 0.4 mg (kg dry wt soil)& minus;1 for agricultural paddy fields in China. A total energy of 2 kW & middot;h and 0.6 kW & middot;h was consumed at the pilot and full scales, respec-tively. This study showed a successful in situ EK remediation of Cd contaminated paddy agricultural soil, espe-cially in the surface layer, with low voltage and energy demand. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  • Lappi, Tuomas (2017)
    A full understanding of the spacetime evolution of the QCD matter created in a heavy ion collision requires understanding the properties of the initial stages. In the weak coupling picture these are dominated by classical gluon fields, whose properties can also be studied via the scattering of dilute probes off a high energy hadron or nucleus. A particular challenge is understanding small systems, where LHC data is also showing signs of collective behavior. We discuss some recent results of on the initial matter production and thermalization in heavy ion collisions, in particular in the gluon saturation framework.
  • Pitkanen, Minna; ShogoYazawa,; Airaksinen, Katja; Lioumis, Pantelis; Nurminen, Jussi; Pekkonen, Eero; Makela, Jyrki P. (2019)
    The mapping of the sensorimotor cortex gives information about the cortical motor and sensory functions. Typical mapping methods are navigated transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG). The differences between these mapping methods are, however, not fully known. TMS center of gravities (CoGs), MEG somatosensory evoked fields (SEFs), corticomuscular coherence (CMC), and corticokinematic coherence (CKC) were mapped in ten healthy adults. TMS mapping was performed for first dorsal interosseous (FDI) and extensor carpi radialis (ECR) muscles. SEFs were induced by tactile stimulation of the index finger. CMC and CKC were determined as the coherence between MEG signals and the electromyography or accelerometer signals, respectively, during voluntary muscle activity. CMC was mapped during the activation of FDI and ECR muscles separately, whereas CKC was measured during the waving of the index finger at a rate of 3-4 Hz. The maximum CMC was found at beta frequency range, whereas maximum CKC was found at the movement frequency. The mean Euclidean distances between different localizations were within 20 mm. The smallest distance was found between TMS FDI and TMS ECR CoGs and longest between CMC FDI and CMC ECR sites. TMS-inferred localizations (CoGs) were less variable across participants than MEG-inferred localizations (CMC, CKC). On average, SEF locations were 8 mm lateral to the TMS CoGs (p <0.01). No differences between hemispheres were found. Based on the results, TMS appears to be more viable than MEG in locating motor cortical areas.
  • Deng, Youjun; Liu, Hongyu; Uhlmann, Gunther (2019)
    We consider the inverse problem of recovering both an unknown electric current and the surrounding electromagnetic parameters of a medium from boundary measurements. This inverse problem arises in brain imaging. We show that under generic conditions one can recover both the source and the electromagnetic parameters if these are piecewise constant and the source current is invariant in a fixed direction or a harmonic function, respectively. (C) 2019 Published by Elsevier Inc.
  • Holman, Sean; Uhlmann, Gunther (2018)
    We study the microlocal properties of the geodesic X-ray transform X on a manifold with boundary allowing the presence of conjugate points. Assuming that there are no self-intersecting geodesics and all conjugate pairs are nonsingular we show that the normal operator N = X-t o X can be decomposed as the sum of a pseudodifferential operator of order -1 and a sum of Fourier integral operators. We also apply this decomposition to prove inversion of X is only mildly ill-posed when all conjugate points are of order 1, and a certain graph condition is satisfied, in dimension three or higher.
  • Kilpua, E. K. J.; Isavnin, A.; Vourlidas, A.; Koskinen, H. E. J.; Rodriguez, L. (2013)
  • Palmerio, Erika; Kilpua, Emilia K. J.; Savani, Neel P. (2016)
    Planar magnetic structures (PMSs) are periods in the solar wind during which interplanetary magnetic field vectors are nearly parallel to a single plane. One of the specific regions where PMSs have been reported are coronal mass ejection (CME)-driven sheaths. We use here an automated method to identify PMSs in 95 CME sheath regions observed in situ by the Wind and ACE spacecraft between 1997 and 2015. The occurrence and location of the PMSs are related to various shock, sheath, and CME properties. We find that PMSs are ubiquitous in CME sheaths; 85% of the studied sheath regions had PMSs with the mean duration of 6 h. In about one-third of the cases the magnetic field vectors followed a single PMS plane that covered a significant part (at least 67%) of the sheath region. Our analysis gives strong support for two suggested PMS formation mechanisms: the amplification and alignment of solar wind discontinuities near the CME-driven shock and the draping of the magnetic field lines around the CME ejecta. For example, we found that the shock and PMS plane normals generally coincided for the events where the PMSs occurred near the shock (68% of the PMS plane normals near the shock were separated by less than 20 degrees from the shock normal), while deviations were clearly larger when PMSs occurred close to the ejecta leading edge. In addition, PMSs near the shock were generally associated with lower upstream plasma beta than the cases where PMSs occurred near the leading edge of the CME. We also demonstrate that the planar parts of the sheath contain a higher amount of strong southward magnetic field than the non-planar parts, suggesting that planar sheaths are more likely to drive magnetospheric activity.
  • Mutanen, Tuomas P.; Kukkonen, Matleena; Nieminen, Jaakko O.; Stenroos, Matti; Sarvas, Jukka; Ilmoniemi, Risto J. (2016)
    Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) often suffers from large muscle artifacts. Muscle artifacts can be removed using signal-space projection (SSP), but this canmake the visual interpretation of the remaining EEG data difficult. We suggest to use an additional step after SSP that we call source-informed reconstruction (SIR). SSP-SIR improves substantially the signal quality of artifactual TMS-EEG data, causing minimal distortion in the neuronal signal components. In the SSP-SIR approach, we first project out the muscle artifact using SSP. Utilizing an anatomical model and the remaining signal, we estimate an equivalent source distribution in the brain. Finally, we map the obtained source estimate onto the original signal space, again using anatomical information. This approach restores the neuronal signals in the sensor space and interpolates EEG traces onto the completely rejected channels. The introduced algorithm efficiently suppresses TMS-related muscle artifacts in EEG while retaining well the neuronal EEG topographies and signals. With the presented method, we can remove muscle artifacts from TMS-EEG data and recover the underlying brain responses without compromising the readability of the signals of interest. (C) 2016 Elsevier Inc. All rights reserved.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Tuuva, T.; Talvitie, J. (2018)
    Searches for resonant and nonresonant pair-produced Higgs bosons (HH) decaying respectively into l nu l nu, through either W or Z bosons, and b (b) over bar are presented. The analyses are based on a sample of proton-proton collisions at root s = 13 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb(-1). Data and predictions from the standard model are in agreement within uncertainties. For the standard model HH hypothesis, the data exclude at 95% confidence level a product of the production cross section and branching fraction larger than 72 fb, corresponding to 79 times the standard model prediction. Constraints are placed on different scenarios considering anomalous couplings, which could affect the rate and kinematics of HH production. Upper limits at 95% confidence level are set on the production cross section of narrow-width spin-0 and spin-2 particles decaying to Higgs boson pairs, the latter produced with minimal gravity-like coupling.
  • Lassas, Matti; Oksanen, Lauri; Stefanov, Plamen; Uhlmann, Gunther (2020)
    We study the weighted light ray transform L of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze L as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function f from its the weighted light ray transform Lf by a suitable filtered back-projection.
  • Donvil, Brecht (2018)
    We present a new approach to the open system dynamics of a periodically driven qubit in contact with a temperature bath. We are specifically interested in the thermodynamics of the qubit. It is well known that by combining the Markovian approximation with Floquet theory it is possible to derive a stochastic Schrodinger equation in C-2 for the state of the qubit. We follow here a different approach. We use Floquet theory to embed the time-non autonomous qubit dynamics into time-autonomous yet infinite dimensional dynamics. We refer to the resulting infinite dimensional system as the dressed-qubit. Using the Markovian approximation we derive the stochastic Schrodinger equation for the dressed-qubit. The advantage of our approach is that the jump operators are ladder operators of the Hamiltonian. This simplifies the formulation of the thermodynamics. We use the thermodynamics of the infinite dimensional system to recover the thermodynamical description for the driven qubit. We compare our results with the existing literature and recover the known results.