Browsing by Subject "FINE PARTICULATE MATTER"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Sokhi, Ranjeet S.; Singh, Vikas; Querol, Xavier; Finardi, Sandro; Targino, Admir Creso; Andrade, Maria de Fatima; Pavlovic, Radenko; Garland, Rebecca M.; Massague, Jordi; Kong, Shaofei; Baklanov, Alexander; Ren, Lu; Tarasova, Oksana; Carmichael, Greg; Peuch, Vincent-Henri; Anand, Vrinda; Arbilla, Graciela; Badali, Kaitlin; Beig, Gufran; Carlos Belalcazar, Luis; Bolignano, Andrea; Brimblecombe, Peter; Camacho, Patricia; Casallas, Alejandro; Charland, Jean-Pierre; Choi, Jason; Chourdakis, Eleftherios; Coll, Isabelle; Collins, Marty; Cyrys, Josef; da Silva, Cleyton Martins; Di Giosa, Alessandro Domenico; Di Leo, Anna; Ferro, Camilo; Gavidia-Calderon, Mario; Gayen, Amiya; Ginzburg, Alexander; Godefroy, Fabrice; Alexandra Gonzalez, Yuri; Guevara-Luna, Marco; Haque, Sk Mafizul; Havenga, Henno; Herod, Dennis; Horrak, Urmas; Hussein, Tareq; Ibarra, Sergio; Jaimes, Monica; Kaasik, Marko; Kousa, Anu; Kukkonen, Jaakko; Kulmala, Markku; Kuula, Joel; Petäjä, Tuukka (2021)
    This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015-2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O-3 and the total gaseous oxidant (O-X = NO2 + O-3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015-2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples' mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015-2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O-3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of similar to 70%. The SO2 anomalies were negative for 2020 compared to 2015-2019 (between similar to 25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to similar to 40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of similar to 60%). Analysis of the total oxidant (OX = NO2 + O-3) showed that primary NO2 emissions at urban locations were greater than the O-3 production, whereas at background sites, O-X was mostly driven by the regional contributions rather than local NO2 and O-3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.
  • Hellen, Heidi; Kangas, Leena; Kousa, Anu; Vestenius, Mika; Teinila, Kimmo; Karppinen, Ari; Kukkonen, Jaakko; Niemi, Jarkko V. (2017)
    Even though emission inventories indicate that wood combustion is a major source of polycyclic aromatic hydrocarbons (PAHs), estimating its impacts on PAH concentration in ambient air remains challenging. In this study the effect of local small-scale wood combustion on the benzo[a] pyrene (BaP) concentrations in ambient air in the Helsinki metropolitan area in Finland is evaluated, using ambient air measurements, emission estimates, and dispersion modeling. The measurements were conducted at 12 different locations during the period from 2007 to 2015. The spatial distributions of annual average BaP concentrations originating from wood combustion were predicted for four of those years: 2008, 2011, 2013, and 2014. According to both the measurements and the dispersion modeling, the European Union target value for the annual average BaP concentrations (1 ngm(-3) ) was clearly exceeded in certain suburban detached-house areas. However, in most of the other urban areas, including the center of Helsinki, the concentrations were below the target value. The measured BaP concentrations highly correlated with the measured levoglucosan concentrations in the suburban detached-house areas. In street canyons, the measured concentrations of BaP were at the same level as those in the urban background, clearly lower than those in suburban detached-house areas. The predicted annual average concentrations matched with the measured concentrations fairly well. Both the measurements and the modeling clearly indicated that wood combustion was the main local source of ambient air BaP in the Helsinki metropolitan area.
  • de Jesus, Alma Lorelei; Thompson, Helen; Knibbs, Luke D.; Kowalski, Michal; Cyrys, Josef; Niemi, Jarkko V.; Kousa, Anu; Timonen, Hilkka; Luoma, Krista; Petäjä, Tuukka; Beddows, David; Harrison, Roy M.; Hopke, Philip; Morawska, Lidia (2020)
    Urbanisation and industrialisation led to the increase of ambient particulate matter (PM) concentration. While subsequent regulations may have resulted in the decrease of some PM matrices, the simultaneous changes in climate affecting local meteorological conditions could also have played a role. To gain an insight into this complex matter, this study investigated the long-term trends of two important matrices, the particle mass (PM2.5) and particle number concentrations (PNC), and the factors that influenced the trends. Mann-Kendall test, Sen's slope estimator, the generalised additive model, seasonal decomposition of time series by LOESS (locally estimated scatterplot smoothing) and the Buishand range test were applied. Both PM2.5 and PNC showed significant negative monotonic trends (0.03-0.6 mg m(-3).yr(-1) and 0.40-3.8 x 10(3) particles. cm(-3). yr(-1), respectively) except Brisbane (+0.1 mg m(-3). yr(-1) and +53 particles. cm(-3). yr(-1), respectively). For the period covered in this study, temperature increased (0.03-0.07 degrees C.yr(-1)) in all cities except London; precipitation decreased (0.02-1.4 mm.yr(-1)) except in Helsinki; and wind speed was reduced in Brisbane and Rochester but increased in Helsinki, London and Augsburg. At the change-points, temperature increase in cold cities influenced PNC while shifts in precipitation and wind speed affected PM2.5. Based on the LOESS trend, extreme events such as dust storms and wildfires resulting from changing climates caused a positive step-change in concentrations, particularly for PM2.5. In contrast, among the mitigation measures, controlling sulphur in fuels caused a negative step-change, especially for PNC. Policies regarding traffic and fleet management (e.g. low emission zones) that were implemented only in certain areas or in a progressive uptake (e.g. Euro emission standards), resulted to gradual reductions in concentrations. Therefore, as this study has clearly shown that PM2.5 and PNC were influenced differently by the impacts of the changing climate and by the mitigation measures, both metrics must be considered in urban air quality management. (C) 2020 Elsevier Ltd. All rights reserved.
  • Hakala, S.; Vakkari, V.; Bianchi, F.; Dada, L.; Deng, C.; Dällenbach, Kaspar; Fu, Y.; Jiang, J.; Kangasluoma, J.; Kujansuu, J.; Liu, Y.; Petäjä, Tuukka; Wang, L.; Yan, C.; Kulmala, M.; Paasonen, P. (2022)
    Atmospheric aerosols have significant effects on the climate and on human health. New particle formation (NPF) is globally an important source of aerosols but its relevance especially towards aerosol mass loadings in highly polluted regions is still controversial. In addition, uncertainties remain regarding the processes leading to severe pollution episodes, concerning e.g. the role of atmospheric transport. In this study, we utilize air mass history analysis in combination with different fields related to the intensity of anthropogenic emissions in order to calculate air mass exposure to anthropogenic emissions (AME) prior to their arrival at Beijing, China. The AME is used as a semi-quantitative metric for describing the effect of air mass history on the potential for aerosol formation. We show that NPF events occur in clean air masses, described by low AME. However, increasing AME seems to be required for substantial growth of nucleation mode (diameter < 30 nm) particles, originating either from NPF or direct emissions, into larger mass-relevant sizes. This finding assists in establishing and understanding the connection between small nucleation mode particles, secondary aerosol formation and the development of pollution episodes. We further use the AME, in combination with basic meteorological variables, for developing a simple and easy-to-apply regression model to predict aerosol volume and mass concentrations. Since the model directly only accounts for changes in meteorological conditions, it can also be used to estimate the influence of emission changes on pollution levels. We apply the developed model to briefly investigate the effects of the COVID-19 lockdown on PM2.5 concentrations in Beijing. While no clear influence directly attributable to the lockdown measures is found, the results are in line with other studies utilizing more widely applied approaches.
  • Timonen, Hilkka; Aurela, Minna; Carbone, Samara; Saarnio, Karri; Frey, Anna; Saarikoski, Sanna; Teinilä, Kimmo; Kulmala, Markku; Hillamo, Risto (2014)
    Concentration and composition of the fine particulate matter (PM) was measured using various online methods for 13 months in an urban, background area in Helsinki, Finland. Seasonal differences were found for ions and carbonaceous compounds. Biomass burning was found to increase inorganic ion and elemental carbon (EC) concentrations in winter, whereas organic carbon (OC) contribution was highest during summer due to secondary aerosol formation. Diurnal cycles, with maxima between 06:00 and 09:00, were recorded for EC and nitrate due to traffic emissions. In addition, the concentrations measured with the online and offline PM sampling devices were compared using regression analysis. In general, a good agreement (r(2) = 0.60-0.95) was found. During the year-long measurements, on average 65% of PM2.5 was identified by submicron chemical analyses (ions, OC, EC). As compared with filter measurements, the high resolution measurements provided important data on short pollution plumes and diurnal changes.
  • Cheng, Xi; Chen, Qi; Li, Yongjie; Huang, Guancong; Liu, Ying; Lu, Sihua; Zheng, Yan; Qiu, Wanyi; Lu, Keding; Qiu, Xinghua; Bianchi, Federico; Yan, Chao; Yuan, Bin; Shao, Min; Wang, Zhe; Canagaratna, Manjula R.; Zhu, Tong; Wu, Yusheng; Zeng, Limin (2021)
    Nitrated phenols (NPs) are important atmospheric pollutants that affect air quality, radiation, and health. The recent development of the time-of-flight chemical ionization mass spectrometer (ToF-CIMS) allows quantitative online measurements of NPs for a better understanding of their sources and environmental impacts. Herein, we deployed nitrate ions as reagent ions in the ToF-CIMS and quantified six classes of gaseous NPs in Beijing. The concentrations of NPs are in the range of 1 to 520 ng m(-3). Nitrophenol (NPh) has the greatest mean concentration. Dinitrophenol (DNP) shows the greatest haze-to-clean concentration ratio, which may be associated with aqueous production. The high concentrations and distinct diurnal profiles of NPs indicate a strong secondary formation to overweigh losses, driven by high emissions of precursors, strong oxidative capacity, and high NOx levels. The budget analysis on the basis of our measurements and box-model calculations suggest a minor role of the photolysis of NPs (
  • de Jesus, Alma Lorelei; Rahman, Md Mahmudur; Mazaheri, Mandana; Thompson, Helen; Knibbs, Luke D.; Jeong, Cheol; Evans, Greg; Nei, Wei; Ding, Aijun; Qiao, Liping; Li, Li; Portin, Harri; Niemi, Jarkko V.; Timonen, Hilkka; Luoma, Krista; Petäjä, Tuukka; Kulmala, Markku; Kowalski, Michal; Peters, Annette; Cyrys, Josef; Ferrero, Luca; Manigrasso, Maurizio; Avino, Pasquale; Buonano, Giorgio; Reche, Cristina; Querol, Xavier; Beddows, David; Harrison, Roy M.; Sowlat, Mohammad H.; Sioutas, Constantinos; Morawska, Lidia (2019)
    Can mitigating only particle mass, as the existing air quality measures do, ultimately lead to reduction in ultrafine particles (UFP)? The aim of this study was to provide a broader urban perspective on the relationship between UFP, measured in terms of particle number concentration (PNC) and PM2.5 (mass concentration of particles with aerodynamic diameter <2.5 mu m) and factors that influence their concentrations. Hourly average PNC and PM2.5 were acquired from 10 cities located in North America, Europe, Asia, and Australia over a 12-month period. A pairwise comparison of the mean difference and the Kolmogorov-Smirnov test with the application of bootstrapping were performed for each city. Diurnal and seasonal trends were obtained using a generalized additive model (GAM). The particle number to mass concentration ratios and the Pearson's correlation coefficient were calculated to elucidate the nature of the relationship between these two metrics. Results show that the annual mean concentrations ranged from 8.0 x 10 3 to 19.5 x 10(3) particles.cm(-3) and from 7.0 to 65.8 mu g.m(-3) for PNC and PM2.5, respectively, with the data distributions generally skewed to the right, and with a wider spread for PNC. PNC showed a more distinct diurnal trend compared with PM2.5, attributed to the high contributions of UFP from vehicular emissions to PNC. The variation in both PNC and PM2.5 due to seasonality is linked to the cities' geographical location and features. Clustering the cities based on annual median concentrations of both PNC and PM2.5 demonstrated that a high PNC level does not lead to a high PM2.5, and vice versa. The particle number-to-mass ratio (in units of 10(9) particles.mu g(-1)) ranged from 0.14 to 2.2, > 1 for roadside sites and <1 for urban background sites with lower values for more polluted cities. The Pearson's r ranged from 0.09 to 0.64 for the log-transformed data, indicating generally poor linear correlation between PNC and PM2.5. Therefore, PNC and PM2.5 measurements are not representative of each other; and regulating PM2.5 does little to reduce PNC. This highlights the need to establish regulatory approaches and control measures to address the impacts of elevated UFP concentrations, especially in urban areas, considering their potential health risks.