Browsing by Subject "FLUX MEASUREMENTS"

Sort by: Order: Results:

Now showing items 1-20 of 21
  • Kajos, M. K.; Rantala, P.; Hill, M.; Hellen, H.; Aalto, J.; Patokoski, J.; Taipale, R.; Hoerger, C. C.; Reimann, S.; Ruuskanen, T. M.; Rinne, J.; Petäjä, T. (2015)
    Proton transfer reaction mass spectrometry (PTR-MS) and gas chromatography mass spectrometry GC-MS) are commonly used methods for automated in situ measurements of various volatile organic compounds (VOCs) in the atmosphere. In order to investigate the reliability of such measurements, we operated four automated analyzers using their normal field measurement protocol side by side at a boreal forest site. We measured methanol, acetaldehyde, acetone, benzene and toluene by two PTR-MS and two GC-MS instruments. The measurements were conducted in southern Finland between 13 April and 14 May 2012. This paper presents correlations and biases between the concentrations measured using the four instruments. A very good correlation was found for benzene and acetone measurements between all instruments (the mean R value was 0.88 for both compounds), while for acetaldehyde and toluene the correlation was weaker (with a mean R value of 0.50 and 0.62, respectively). For some compounds, notably for methanol, there were considerable systematic differences in the mixing ratios measured by the different instruments, despite the very good correlation between the instruments (mean R = 0.90). The systematic difference manifests as a difference in the linear regression slope between measurements conducted between instruments, rather than as an offset. This mismatch indicates that the systematic uncertainty in the sensitivity of a given instrument can lead to an uncertainty of 50-100% in the methanol emissions measured by commonly used methods.
  • Rantala, P.; Aalto, J.; Taipale, R.; Ruuskanen, T. M.; Rinne, J. (2015)
    Long-term flux measurements of volatile organic compounds (VOC) over boreal forests are rare, although the forests are known to emit considerable amounts of VOCs into the atmosphere. Thus, we measured fluxes of several VOCs and oxygenated VOCs over a Scots-pine-dominated boreal forest semi-continuously between May 2010 and December 2013. The VOC profiles were obtained with a proton transfer reaction mass spectrometry, and the fluxes were calculated using vertical concentration profiles and the surface layer profile method connected to the Monin-Obukhov similarity theory. In total fluxes that differed significantly from zero on a monthly basis were observed for 13 out of 27 measured masses. Monoterpenes had the highest net emission in all seasons and statistically significant positive fluxes were detected from March until October. Other important compounds emitted were methanol, ethanol+ formic acid, acetone and isoprene+ methylbutenol. Oxygenated VOCs showed also deposition fluxes that were statistically different from zero. Isoprene+ methylbutenol and monoterpene fluxes followed well the traditional isoprene algorithm and the hybrid algorithm, respectively. Emission potentials of monoterpenes were largest in late spring and autumn which was possibly driven by growth processes and decaying of soil litter, respectively. Conversely, largest emission potentials of isoprene+ methylbutenol were found in July. Thus, we concluded that most of the emissions of m/z 69 at the site consisted of isoprene that originated from broadleaved trees. Methanol had deposition fluxes especially before sunrise. This can be connected to water films on surfaces. Based on this assumption, we were able to build an empirical algorithm for bi-directional methanol exchange that described both emission term and deposition term. Methanol emissions were highest in May and June and deposition level increased towards autumn, probably as a result of increasing relative humidity levels leading to predominance of deposition.
  • Alekseychik, Pavel; Korrensalo, Aino; Mammarella, Ivan; Launiainen, Samuli; Tuittila, Eeva-Stiina; Korpela, Ilkka; Vesala, Timo (2021)
    Pristine boreal mires are known as substantial sinks of carbon dioxide (CO2) and net emitters of methane (CH4). Bogs constitute a major fraction of pristine boreal mires. However, the bog CO2 and CH4 balances are poorly known, having been largely estimated based on discrete and short-term measurements by manual chambers and seldom using the eddy-covariance (EC) technique. Eddy-covariance (EC) measurements of CO2 and CH4 exchange were conducted in the Siikaneva mire complex in southern Finland in 2011-2016. The site is a patterned bog having a moss-sedge-shrub vegetation typical of southern Eurasian taiga, with several ponds near the EC tower. The study presents a complete series of CO2 and CH4 EC flux (F-CH4) measurements and identifies the environmental factors controlling the ecosystem-atmosphere CO2 and CH4 exchange. A 6-year average growing season (May-September) cumulative CO2 exchange of -61 +/- 24 g Cm-2 was observed, which partitions into mean total respiration (Re) of 167 +/- 33 (interannual range 146-197) g Cm-2 and mean gross primary production (GPP) of 228 +/- 46 (interannual range 193-257) g Cm-2, while the corresponding F-CH4 amounts to 7.1 +/- 0.7 (interannual range 6.4-8.4) g Cm-2. The contribution of October-December CO2 and CH4 fluxes to the cumulative sums was not negligible based on the measurements during one winter. GPP, Re and F-CH4 increased with temperature. GPP and F-CH4 did not show any significant decline even after a substantial water table drawdown in 2011. Instead, GPP, Re and F-CH4 were limited in the cool, cloudy and wet growing season of 2012. May-September cumulative net ecosystem exchange (NEE) of 2013-2016 averaged at about 73 g Cm-2, in contrast with the hot and dry year 2011 and the wet and cool year 2012. Suboptimal weather likely reduced the net sink by about 25 g Cm-2 in 2011 due to elevated Re, and by about 40 g Cm-2 in 2012 due to limited GPP. The cumulative growing season sums of GPP and CH4 emission showed a strong positive relationship. The EC source area was found to be comprised of eight distinct surface types. However, footprint analyses revealed that contributions of different surface types varied only within 10 %-20% with respect to wind direction and stability conditions. Consequently, no clear link between CO2 and CH4 fluxes and the EC footprint composition was found despite the apparent variation in fluxes with wind direction.
  • Lind, Saara E.; Shurpali, Narasinha J.; Peltola, Olli; Mammarella, Ivan; Hyvonen, Niina; Maljanen, Marja; Raty, Mari; Virkajarvi, Perttu; Martikainen, Pertti J. (2016)
    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinacea L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured from July 2009 until the end of 2011 using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha(-1) in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m(-2) in 2010 and 2011, respectively. Throughout the study period from July 2009 until the end of 2011, cumulative NEE was -575 g C m(-2). Carbon balance and its regulatory factors were compared to the published results of a comparison site on drained organic soil cultivated with RCG in the same climate. On this mineral soil site, the RCG had higher capacity to take up CO2 from the atmosphere than on the comparison site.
  • Rinne, J.; Tuovinen, J. -P.; Klemedtsson, L.; Aurela, M.; Holst, J.; Lohila, A.; Weslien, P.; Vestin, P.; Łakomiec, P.; Peichl, M.; Peichl, M.; Tuittila, E. -S.; Heiskanen, L.; Laurila, T.; Li, Xuefei; Alekseychik, P.; Mammarella, I.; Ström, L.; Crill, P.; Nilsson, M. B. (2020)
    We analysed the effect of the 2018 European drought on greenhouse gas (GHG) exchange of five North European mire ecosystems. The low precipitation and high summer temperatures in Fennoscandia led to a lowered water table in the majority of these mires. This lowered both carbon dioxide (CO2) uptake and methane (CH4) emission during 2018, turning three out of the five mires from CO(2)sinks to sources. The calculated radiative forcing showed that the drought-induced changes in GHG fluxes first resulted in a cooling effect lasting 15-50 years, due to the lowered CH(4)emission, which was followed by warming due to the lower CO(2)uptake. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  • Mander, Ulo; Krasnova, Alisa; Escuer-Gatius, Jordi; Espenberg, Mikk; Schindler, Thomas; Machacova, Katerina; Parn, Jaan; Maddison, Martin; Megonigal, J. Patrick; Pihlatie, Mari; Kasak, Kuno; Niinemets, Ulo; Junninen, Heikki; Soosaar, Kaido (2021)
    Riparian forests are known as hot spots of nitrogen cycling in landscapes. Climate warming speeds up the cycle. Here we present results from a multi-annual high temporal-frequency study of soil, stem, and ecosystem (eddy covariance) fluxes of N2O from a typical riparian forest in Europe. Hot moments (extreme events of N2O emission) lasted a quarter of the study period but contributed more than half of soil fluxes. We demonstrate that high soil emissions of N2O do not escape the ecosystem but are processed in the canopy. Rapid water content change across intermediate soil moisture was a major determinant of elevated soil emissions in spring. The freeze-thaw period is another hot moment. However, according to the eddy covariance measurements, the riparian forest is a modest source of N2O. We propose photochemical reactions and dissolution in canopy-space water as reduction mechanisms.
  • Kittler, Fanny; Eugster, Werner; Foken, Thomas; Heimann, Martin; Kolle, Olaf; Göckede, Mathias (2017)
    This study aimed at quantifying potential negative effects of instrument heating to improve eddy-covariance flux data quality in cold environments. Our overarching objective was to minimize heating-related bias in annual CO2 budgets from an Arctic permafrost system. We used continuous eddy-covariance measurements covering three full years within an Arctic permafrost ecosystem with parallel sonic anemometers operation with activated heating and without heating as well as parallel operation of open- and closed-path gas analyzers, the latter serving as a reference. Our results demonstrate that the sonic anemometer heating has a direct effect on temperature measurements while the turbulent wind field is not affected. As a consequence, fluxes of sensible heat are increased by an average 5 W m(-2) with activated heating, while no direct effect on other scalar fluxes was observed. However, the biased measurements in sensible heat fluxes can have an indirect effect on the CO2 fluxes in case they are used as input for a density-flux WPL correction of an open-path gas analyzer. Evaluating the self-heating effect of the open-path gas analyzer by comparing CO2 flux measurements between open- and closed-path gas analyzers, we found systematically higher CO2 uptake recorded with the open-path sensor, leading to a cumulative annual offset of 96 g Cm-2, which was not only the result of the cold winter season but also due to substantial self-heating effects during summer. With an inclined sensor mounting, only a fraction of the self-heating correction for vertically mounted instruments is required.
  • Potes, M.; Salgado, R.; Costa, M. J.; Morais, M.; Bortoli, D.; Kostadinov, I.; Mammarella, I. (2017)
    The study of lake-atmosphere interactions was the main purpose of a 2014 summer experiment at Alqueva reservoir in Portugal. Near-surface fluxes of momentum, heat and mass [water vapour (H2O) and carbon dioxide (CO2)] were obtained with the new Campbell Scientific's IRGASON Integrated Open-Path CO2/H2O Gas Analyser and 3D Sonic Anemometer between 2 June and 2 October. On average, the reservoir was releasing energy in the form of sensible and latent heat flux during the study period. At the end of the 75 d, the total evaporation was estimated as 490.26 mm. A high correlation was found between the latent heat flux and the wind speed (R = 0.97). The temperature gradient between air and water was positive between 12 and 21 UTC, causing a negative sensible heat flux, and negative during the rest of the day, triggering a positive sensible heat flux. The reservoir acted as a sink of atmospheric CO2 with an average rate of -0.026 mg m(-2) s(-1). However, at a daily scale we found an unexpected uptake between 0 and 9 UTC and almost null flux between 13 and 19 UTC. Potential reasons for this result are further discussed. The net radiation was recorded for the same period and water column heat storage was estimated using water temperature profiles. The energy balance closure for the analysed period was 81%. In-water solar spectral downwelling irradiance profiles were measured with a new device allowing measurements independent of the solar zenith angle, which enabled the computation of the attenuation coefficient of light in the water column. The average attenuation coefficient for the photosynthetically active radiation spectral region varied from 0.849 +/- 0.025 m(-1) on 30 July to 1.459 +/- 0.007 m(-1) on 25 September.
  • Kittler, Fanny; Heimann, Martin; Kolle, Olaf; Zimov, Nikita; Zimov, Sergei; Gockede, Mathias (2017)
    Permafrost landscapes in northern high latitudes with their massive organic carbon stocks are an important, poorly known, component of the global carbon cycle. However, in light of future Arctic warming, the sustainability of these carbon pools is uncertain. To a large part, this is due to a limited understanding of the carbon cycle processes because of sparse observations in Arctic permafrost ecosystems. Here we present an eddy covariance data set covering more than 3 years of continuous CO2 and CH4 flux observations within a moist tussock tundra ecosystem near Chersky in north-eastern Siberia. Through parallel observations of a disturbed (drained) area and a control area nearby, we aim to evaluate the long-term effects of a persistently lowered water table on the net vertical carbon exchange budgets and the dominating biogeochemical mechanisms. Persistently drier soils trigger systematic shifts in the tundra ecosystem carbon cycle patterns. Both, uptake rates of CO2 and emissions of CH4 decreased. Year-round measurements emphasize the importance of the non-growing seasonin particular the zero-curtain period in the fallto the annual budget. Approximately 60% of the CO2 uptake in the growing season is lost during the cold seasons, while CH4 emissions during the non-growing season account for 30% of the annual budget. Year-to-year variability in temperature conditions during the late growing season was identified as the primary control of the interannual variability observed in the CO2 and CH4 fluxes.
  • Jaars, Kerneels; van Zyl, Pieter G.; Beukes, Johan P.; Hellen, Heidi; Vakkari, Ville; Josipovic, Micky; Venter, Andrew D.; Räsänen, Matti; Knoetze, Leandra; Cilliers, Dirk P.; Siebert, Stefan J.; Kulmala, Markku; Rinne, Janne; Guenther, Alex; Laakso, Lauri; Hakola, Hannele (2016)
    Biogenic volatile organic compounds (BVOCs) play an important role in the chemistry of the troposphere, especially in the formation of tropospheric ozone (O-3) and secondary organic aerosols (SOA). Ecosystems produce and emit a large number of BVOCs. It is estimated on a global scale that approximately 90% of annual BVOC emissions are from terrestrial sources. In this study, measurements of BVOCs were conducted at the Welgegund measurement station (South Africa), which is considered to be a regionally representative background site situated in savannah grasslands. Very few BVOC measurements exist for savannah grasslands and results presented in this study are the most extensive for this type of landscape. Samples were collected twice a week for 2 h during the daytime and 2 h during the night-time through two long-term sampling campaigns from February 2011 to February 2012 and from December 2013 to February 2015, respectively. Individual BVOCs were identified and quantified using a thermal desorption instrument, which was connected to a gas chromatograph and a mass selective detector. The annual median concentrations of isoprene, 2-methyl-3-butene-2-ol (MBO), monoterpene and sesquiterpene (SQT) during the first campaign were 14, 7, 120 and 8 pptv, respectively, and 14, 4, 83 and 4 pptv, respectively, during the second campaign. The sum of the concentrations of the monoterpenes were at least an order of magnitude higher than the concentrations of other BVOC species during both sampling campaigns, with alpha-pinene being the most abundant species. The highest BVOC concentrations were observed during the wet season and elevated soil moisture was associated with increased BVOC concentrations. However, comparisons with measurements conducted at other landscapes in southern Africa and the rest of the world that have more woody vegetation indicated that BVOC concentrations were, in general, significantly lower for savannah grasslands. Furthermore, BVOC concentrations were an order of magnitude lower compared to total aromatic concentrations measured at Welgegund. An analysis of concentrations by wind direction indicated that isoprene concentrations were higher from the western sector that is considered to be a relatively clean regional background region with no large anthropogenic point sources, while wind direction did not indicate any significant differences in the concentrations of the other BVOC species. Statistical analysis indicated that soil moisture had the most significant impact on atmospheric levels of MBO, monoterpene and SQT concentrations, whereas temperature had the greatest influence on isoprene levels. The combined O-3 formation potentials of all the BVOCs measured calculated with maximum incremental reactivity (MIR) coefficients during the first and second campaign were 1162 and 1022 pptv, respectively. alpha-Pinene and limonene had the highest reaction rates with O3, whereas isoprene exhibited relatively small contributions to O3 depletion. Limonene, alpha-pinene and terpinolene had the largest contributions to the OH reactivity of BVOCs measured at Welgegund for all of the months during both sampling campaigns.
  • Koskinen, Markku; Minkkinen, K.; Ojanen, P.; Kamarainen, M.; Laurila, Tuomas; Lohila, A. (2014)
  • Tsuruta, Aki; Aalto, Tuula; Backman, Leif; Krol, Maarten C.; Peters, Wouter; Lienert, Sebastian; Joos, Fortunat; Miller, Paul A.; Zhang, Wenxin; Laurila, Tuomas; Hatakka, Juha; Leskinen, Ari; Lehtinen, Kari E. J.; Peltola, Olli; Vesala, Timo; Levula, Janne; Dlugokencky, Ed; Heimann, Martin; Kozlova, Elena; Aurela, Mika; Lohila, Annalea; Kauhaniemi, Mari; Gomez-Pelaez, Angel J. (2019)
    We estimated the CH4 budget in Finland for 2004?2014 using the CTE-CH4 data assimilation system with an extended atmospheric CH4 observation network of seven sites from Finland to surrounding regions (Hyytiälä, Kj?lnes, Kumpula, Pallas, Puijo, Sodankylä, and Utö). The estimated average annual total emission for Finland is 0.6?±?0.5 Tg CH4 yr?1. Sensitivity experiments show that the posterior biospheric emission estimates for Finland are between 0.3 and 0.9 Tg CH4 yr?1, which lies between the LPX-Bern-DYPTOP (0.2 Tg CH4 yr?1) and LPJG-WHyMe (2.2 Tg CH4 yr?1) process-based model estimates. For anthropogenic emissions, we found that the EDGAR v4.2 FT2010 inventory (0.4 Tg CH4 yr?1) is likely to overestimate emissions in southernmost Finland, but the extent of overestimation and possible relocation of emissions are difficult to derive from the current observation network. The posterior emission estimates were especially reliant on prior information in central Finland. However, based on analysis of posterior atmospheric CH4, we found that the anthropogenic emission distribution based on a national inventory is more reliable than the one based on EDGAR v4.2 FT2010. The contribution of total emissions in Finland to global total emissions is only about 0.13%, and the derived total emissions in Finland showed no trend during 2004?2014. The model using optimized emissions was able to reproduce observed atmospheric CH4 at the sites in Finland and surrounding regions fairly well (correlation > 0.75, bias
  • Thum, Tea; Zaehle, Sönke; Köhler, Philipp; Aalto, Tuula; Aurela, Mika; Guanter, Luis; Kolari, Pasi; Laurila, Tuomas; Lohila, Annalea; Magnani, Federico; Van der Tol, Christiaan; Markkanen, Tiina (2017)
    Recent satellite observations of sun-induced chlorophyll fluorescence (SIF) are thought to provide a large-scale proxy for gross primary production (GPP), thus providing a new way to assess the performance of land surface models (LSMs). In this study, we assessed how well SIF is able to predict GPP in the Fenno-Scandinavian region and what potential limitations for its application exist. We implemented a SIF model into the JSBACH LSM and used active leaf-level chlorophyll fluorescence measurements (Chl F) to evaluate the performance of the SIF module at a coniferous forest at Hyytiala, Finland. We also compared simulated GPP and SIF at four Finnish micrometeorological flux measurement sites to observed GPP as well as to satellite-observed SIF. Finally, we conducted a regional model simulation for the Fenno-Scandinavian region with JSBACH and compared the results to SIF retrievals from the GOME-2 (Global Ozone Monitoring Experiment-2) space-borne spectrometer and to observation-based regional GPP estimates. Both observations and simulations revealed that SIF can be used to estimate GPP at both site and regional scales. At regional scale the model was able to simulate observed SIF averaged over 5 years with r(2) of 0.86. The GOME-2-based SIF was a better proxy for GPP than the remotely sensed fA-PAR (fraction of absorbed photosynthetic active radiation by vegetation). The observed SIF captured the seasonality of the photosynthesis at site scale and showed feasibility for use in improving of model seasonality at site and regional scale.
  • Bellucco, Veronica; Marras, Serena; Grimmond, C. Susan B.; Järvi, Leena; Sirca, Costantino; Spano, Donatella (2017)
    The biogenic CO2 surface atmosphere exchange is investigated and linked to vegetation cover fraction for seven sites (three urban and four non-urban) in the northern hemisphere. The non-rectangular hyperbola (NRH) is used to analyse the light-response curves during period of maximum ecophysiological processes, and to develop two models to simulate biogenic vertical CO2 fluxes. First, a generalised set of NRH coefficients is calculated after linear regression analysis across urban and non-urban ecosystems. Second, site-specific NRH coefficients are calculated for a suburban area in Helsinki, Finland. The model includes a temperature driven equation to estimate ecosystem respiration, and variation of leaf area index to modulate emissions across the year. Eddy covariance measured CO2 fluxes are used to evaluate the two models at the suburban Helsinki site and the generalised model also in Mediterranean ecosystem. Both models can simulate the mean daily trend at monthly and seasonal scales. Modelled data typically fall within the range of variability of the observations (differences of the order of 10%). Additional information improves the models performance, notably the selection of the most vegetated wind direction in Helsinki. The general model performs reasonably well during daytime but it tends to underestimate CO2 emissions at night. This reflects the model capability to catch photosynthesis processes occurring during the day, and the importance of the gross primary production (GPP) in modifying the net ecosystem exchange (NEE) of urban sites with different vegetation cover fraction. Therefore, the general model does not capture the differences in ecosystem respiration that skew nocturnal fluxes. The relation between the generalised NRH plateau parameter and vegetation cover improves (R-2 from 0.7 to 0.9) when only summer weekends with wind coming from the most vegetated sector in Helsinki and well-watered conditions for Mediterranean sites are included in the analysis. In the local model, the inclusion of a temperature driven equation for estimating the ecosystem respiration instead of a constant value, does not improve the long-term simulations. In conclusion, both the general and local models have significant potential and offer valid modelling options of biogenic components of carbon exchange in urban and non-urban ecosystems.(C) 2016 Elsevier B.V. All rights reserved.
  • Shurpali, Narasinha J.; Rannik, Ullar; Jokinen, Simo; Lind, Saara; Biasi, Christina; Mammarella, Ivan; Peltola, Olli; Pihlatie, Mari; Hyvonen, Niina; Raty, Mari; Haapanala, Sami; Zahniser, Mark; Virkajarvi, Perttu; Vesala, Timo; Martikainen, Pertti J. (2016)
    Nitrous oxide (N2O) is an important greenhouse gas produced in soil and aquatic ecosystems. Its warming potential is 296 times higher than that of CO2. Most N2O emission measurements made so far are limited in temporal and spatial resolution causing uncertainties in the global N2O budget. Recent advances in laser spectroscopic techniques provide an excellent tool for area-integrated, direct and continuous field measurements of N2O fluxes using the eddy covariance method. By employing this technique on an agricultural site with four laser-based analysers, we show here that N2O exchange exhibits contrasting diurnal behaviour depending upon soil nitrogen availability. When soil N was high due to fertilizer application, N2O emissions were higher during daytime than during the night. However, when soil N became limited, emissions were higher during the night than during the day. These reverse diurnal patterns supported by isotopic analyses may indicate a dominant role of plants on microbial processes associated with N2O exchange. This study highlights the potential of new technologies in improving estimates of global N2O sources.
  • Savi, Flavia; Nemitz, Eiko; Coyle, Mhairi; Aitkenhead, Matt; Frumau, Kfa; Gerosa, Giacomo; Finco, Angelo; Gruening, Carten; Goded, Ignacio; Loubet, Benjamin; Stella, Patrick; Ruuskanen, Taina; Weidinger, T.; Horvath, L.; Zenone, Terenzio; Fares, Silvano (2020)
    Tropospheric ozone (O-3) is probably the air pollutant most damaging to vegetation. Understanding how plants respond to O(3)pollution under different climate conditions is of central importance for predicting the interactions between climate change, ozone impact and vegetation. This work analyses the effect of O(3)fluxes on net ecosystem productivity (NEP), measured directly at the ecosystem level with the eddy covariance (EC) technique. The relationship was explored with artificial neural networks (ANNs), which were used to model NEP using environmental and phenological variables as inputs in addition to stomatal O(3)uptake in Spring and Summer, when O(3)pollution is expected to be highest. A sensitivity analysis allowed us to isolate the effect of O-3, visualize the shape of the O-3-NEP functional relationship and explore how climatic variables affect NEP response to O-3. This approach has been applied to eleven ecosystems covering a range of climatic areas. The analysis highlighted that O(3)effects over NEP are highly non-linear and site-specific. A significant but small NEP reduction was found during Spring in a Scottish shrubland (-0.67%), in two Italian forests (up to -1.37%) and during Summer in a Californian orange orchard (-1.25%). Although the overall seasonal effect of O(3)on NEP was not found to be negative for the other sites, with episodic O(3)detrimental effect still identified. These episodes were correlated with meteorological variables showing that O(3)damage depends on weather conditions. By identifying O(3)damage under field conditions and the environmental factors influencing to that damage, this work provides an insight into O(3)pollution, climate and weather conditions.
  • Mäkela, Jarmo; Knauer, Juergen; Aurela, Mika; Black, Andrew; Heimann, Martin; Kobayashi, Hideki; Lohila, Annalea; Mammarella, Ivan; Margolis, Hank; Markkanen, Tiina; Susiluoto, Jouni; Thum, Tea; Viskari, Toni; Zaehle, Soenke; Aalto, Tuula (2019)
    We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from 10 FLUXNET coniferous evergreen sites in the boreal zone. The parameter posterior distributions were generated by the adaptive population importance sampler (APIS); then the optimal values were estimated by a simple stochastic optimisation algorithm. The model was constrained with in situ observations of evapotranspiration (ET) and gross primary production (GPP). We identified the key parameters in the calibration process. These parameters control the soil moisture stress function and the overall rate of carbon fixation. The JSBACH model was also modified to use a delayed effect of temperature for photosynthetic activity in spring. This modification enabled the model to correctly reproduce the springtime increase in GPP for all conifer sites used in this study. Overall, the calibration and model modifications improved the coefficient of determination and the model bias for GPP with all stomatal conductance formulations. However, only the coefficient of determination was clearly improved for ET. The optimisation resulted in best performance by the Bethy, Ball-Berry, and the Friend and Kiang stomatal conductance models. We also optimised the model during a drought event at a Finnish Scots pine forest site. This optimisation improved the model behaviour but resulted in significant changes to the parameter values except for the unified stomatal optimisation model (USO). Interestingly, the USO demonstrated the best performance during this event.
  • Rovelli, Lorenzo; Attard, Karl M.; Binley, Andrew; Heppell, Catherine M.; Stahl, Henrik; Trimmer, Mark; Glud, Ronnie N. (2017)
    We investigated the seasonal dynamics of in-stream metabolism at the reach scale (approximate to 150 m) of headwaters across contrasting geological sub-catchments: clay, Greensand, and Chalk of the upper River Avon (UK). Benthic metabolic activity was quantified by aquatic eddy co-variance while water column activity was assessed by bottle incubations. Seasonal dynamics across reaches were specific for the three types of geologies. During the spring, all reaches were net autotrophic, with rates of up to 290 mmol C m(-2) d(-1) in the clay reach. During the remaining seasons, the clay and Greensand reaches were net heterotrophic, with peak oxygen consumption of 206 mmol m(-2) d(-1) during the autumn, while the Chalk reach was net heterotrophic only in winter. Overall, the water column alone still contributed to approximate to 25% of the annual respiration and primary production in all reaches. Net ecosystem metabolism (NEM) across seasons and reaches followed a general linear relationship with increasing stream light availability. Sub-catchment specific NEM proved to be linearly related to the local hydrological connectivity, quantified as the ratio between base flow and stream discharge, and expressed on a timescale of 9 d on average. This timescale apparently represents the average period of hydrological imprint for carbon turnover within the reaches. Combining a general light response and sub-catchment specific base flow ratio provided a robust functional relationship for predicting NEM at the reach scale. The novel approach proposed in this study can help facilitate spatial and temporal upscaling of riverine metabolism that may be applicable to a broader spectrum of catchments.
  • Korrensalo, Aino; Mannisto, Elisa; Alekseychik, Pavel; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; Tuittila, Eeva-Stiina (2018)
    We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012-2014) using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, species composition, total leaf area (LAI(TOT)) and leaf area of aerenchymatous plant species (LAI(AER)). Methane emissions ranged from -309 to 1254 mg m(-2) d(-1). Although methane fluxes increased with increasing peat temperature, LAI(TOT) and LAI(AER), they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC) technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAI(AER) and LAI(TOT) in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.
  • Jarvi, Leena; Havu, Minttu; Ward, Helen C.; Bellucco, Veronica; McFadden, Joseph P.; Toivonen, Tuuli; Heikinheimo, Vuokko; Kolari, Pasi; Riikonen, Anu; Grimmond, C. Sue B. (2019)
    There is a growing need to simulate the effect of urban planning on both local climate and greenhouse gas emissions. Here, a new urban surface carbon dioxide (CO2) flux module for the Surface Urban Energy and Water Balance Scheme is described and evaluated using eddy covariance observations at two sites in Helsinki in 2012. The spatial variability and magnitude of local-scale anthropogenic and biogenic CO2 flux components at high spatial (250 m x 250 m) and temporal (hourly) resolution are examined by combining high-resolution (down to 2 m) airborne lidar-derived land use data and mobility data to account for people's movement. Urban effects are included in the biogenic components parameterized using urban eddy covariance and chamber observations. Surface Urban Energy and Water Balance Scheme reproduces the seasonal and diurnal variability of the CO2 flux well. Annual totals deviate 3% from observations in the city center and 2% in a suburban location. In the latter, traffic is the dominant CO2 source but summertime vegetation partly offsets traffic-related emissions. In the city center, emissions from traffic and human metabolism dominate and the vegetation effect is minor due to the low proportion of vegetation surface cover (22%). Within central Helsinki, human metabolism accounts for 39% of the net local-scale emissions and together with road traffic is to a large extent responsible for the spatial variability of the emissions. Annually, the biogenic emissions and sinks are in near balance and thus the effect of vegetation on the carbon balance is small in this high-latitude city.