Browsing by Subject "FOOD WEBS"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • Morris, Rebecca J.; Gripenberg, Sofia; Lewis, Owen T.; Roslin, Tomas (2014)
  • Milardi, Marco; Lappalainen, Jyrki; McGowan, Suzanne; Weckström, Jan (2017)
    The additional input and enhanced cycling of nutrients derived from introduced fish can be a significant factor altering nutrient dynamics in oligotrophic lakes. To test this, we used a bioenergetic model to estimate the fish-derived nutrient load in Lake Kuutsjurvi, a historically fishless boreal lake of northern Fennoscandia. The lake was selected because of the absence of other anthropogenic stressors, a known stocking history and the possibility of quantitatively estimating the size-structure and biomass of the fish population through a mass removal. Subsequently, we used a mass balance model to compare fish-derived nutrients with other nutrient load pathways. For comparison over longer timescales, we used lake sediment records of diatoms, chlorophyll and carotenoid pigments, C: N ratios and stable isotopes to infer whether fish introduction produced detectable changes in the lake trophic state, primary productivity and terrestrial nutrient input. Based on the nutrient mass balance model, we found that phosphorus and nitrogen derived from fish were 0.46% and 2.2%, respectively, of the total load to the lake, suggesting that fish introduction could not markedly increase the nutrient load. Accordingly, the palaeolimnological record indicated little increase in primary production but instead a shift from pelagic to benthic production after fish introduction.
  • Kankaala, Paula; Arvola, Lauri; Hiltunen, Minna; Huotari, Jussi; Jones, Roger I.; Hannu, Nykänen; Ojala, Anne; Olin, Mikko; Peltomaa, Elina; Peura, Sari; Rask, Martti; Tulonen, Tiina; Vesala, Sami (2019)
    Recent increases in terrestrial dissolved organic carbon (DOC) concentrations in northern inland waters have many ecological consequences. We examined available data on carbon cycles and food webs of 2 boreal headwater lakes in southern Finland. Basic limnology and catchment characteristics of a pristine lake, Valkea-Kotinen (VK), were monitored over the past 25 years while the lake has undergone browning and DOC increased from similar to 11 to 13 mg L-1. Pronounced changes in the early 2000s represent a regime shift in DOC concentration and color. Lake Alinen Mustajarvi (AM) was manipulated for 2 years by additions of labile DOC (cane sugar), raising the DOC concentration from similar to 10 to 12 mg L-1, but not changing light conditions. The 2 different approaches both revealed increased concentrations and efflux of carbon dioxide (CO2) from the lakes and thus net heterotrophy and changes in the pelagic community structure following an increase in DOC concentration. Long-term monitoring of VK revealed a decline in phytoplankton primary production (PP) along with browning, which was reflected in retarded growth of young (1-2-year-old) perch. In the experimentally manipulated lake (AM), PP was not affected, and the growth of young perch was more variable. The results suggested the importance of a pathway from labile DOC via benthic invertebrates to perch. Although provided with this extra resource, the food chain based on DOC proved inefficient. Long-term monitoring and whole-lake experimentation are complementary approaches for revealing how freshwater ecosystems respond to climate and/or atmospheric deposition-induced changes, such as browning.
  • Hentati-Sundberg, J.; Raymond, C.; Skoeld, M.; Svensson, O.; Gustafsson, B.; Bonaglia, S. (2020)
    Seabirds redistribute nutrients between different ecosystem compartments and over vast geographical areas. This nutrient transfer may impact both local ecosystems on seabird breeding islands and regional biogeochemical cycling, but these processes are seldom considered in local conservation plans or biogeochemical models. The island of Stora Karlso in the Baltic Sea hosts the largest concentration of piscivorous seabirds in the region, and also hosts a large colony of insectivorous House martins Delichon urbicum adjacent to the breeding seabirds. We show that a previously reported unusually high insectivore abundance was explained by large amounts of chironomids-highly enriched in delta N-15-that feed on seabird residues as larvae along rocky shores to eventually emerge as flying adults. Benthic ammonium and phosphate fluxes were up to 163% and 153% higher close to the colony (1,300 m distance) than further away (2,700 m) and the estimated nutrient release from the seabirds at were in the same order of magnitude as the loads from the largest waste-water treatment plants in the region. The trophic cascade impacting insectivorous passerines and the substantial redistribution of nutrients suggest that seabird nutrient transfer should be increasingly considered in local conservation plans and regional nutrient cycling models.
  • Taipale, Sami J.; Vuorio, Kristiina; Brett, Michael T.; Peltomaa, Elina; Hiltunen, Minna; Kankaala, Paula (2016)
    Analyses of carbon stable isotopes are often used to estimate the contributions of allochthonous and autochthonous dietary resources to aquatic consumers. Most pelagic food web studies assume that all phytoplankton taxa have a similar delta C-13 value. We studied pelagic food web compartments (dissolved inorganic carbon [DIC], phytoplankton, bacteria, seston, cladoceran zooplankton) in 12 small (<0.1 km(2)) lakes in southern Finland. These lakes were classified as oligotrophic, mesotrophic, eutrophic, and dystrophic based on their concentrations of total phosphorus and dissolved organic carbon. Additionally, we studied phytoplankton photosynthetic carbon fractionation (epsilon(p)) in laboratory conditions. The photosynthetic fractionation in 28 phytoplankton cultures from nine different phytoplankton classes varied significantly at the class level, and fractionation correlated significantly with the DIC concentration of the growth media. In small boreal lakes, the delta C-13 values of different phytoplankton taxa, as directly measured or estimated from the delta C-13 values of biomarker fatty acids, varied greatly (-18 parts per thousand to - 44.5 parts per thousand). Phytoplankton delta C-13 values varied significantly by lake type and were most depleted in dystrophic lakes even though the delta C-13 values of the DIC was similar to mesotrophic lakes. Further within-taxa variation was found between lakes and between different depths within a lake. Vertical samples from dystrophic lakes also showed lower ep in the phytoplankton from meta-and hypolimnion, possibly as a result of reduced light intensity. Altogether, in nine of the 10 sampled lakes, the delta C-13 values of cladoceran zooplankton were between the minimum and the maximum phytoplankton delta C-13 value of each lake, and thus, phytoplankton alone could explain zooplankton delta C-13 values. We conclude that stable isotope mixing models should take into account carbon variation among different phytoplankton taxa.
  • de Meo, Ilaria; Ostbye, Kjartan; Kahilainen, Kimmo K.; Hayden, Brian; Magnus, Marius; Poleo, Antonio B. S. (2023)
    Generalist fish species can feed on a wide resource spectrum and across trophic levels depending on resource availability and trophic interactions. Crucian carp (Carassius carassius) represents a good candidate species to investigate variation in the trophic ecology of generalist fish as it can be found in highly variable fish communities and its resource use is well documented. In this study, we explored the trophic ecology of crucian carp at the individual and population levels using stable isotope and gut content analysis. We tested if trophic resource use varied according to lake productivity, predation risk, intra- and interspecific competition, or individual fish size. We found that crucian carp resource preference was highly variable among and within lakes. In predator-free lakes, small crucian carp occurred in high densities, showed increased interindividual specialisation, and relied mainly on pelagic zooplankton. In presence of predators, large crucian carp occurred in low densities and included greater proportions of benthic macroinvertebrates in their diet. This shift in resource use was further favoured in productive, shallow lakes where littoral prey were probably abundant. Resource partitioning was an important factor determining crucian carp niche use, as fish had higher trophic position in absence of other cyprinids. Crucian carp showed highly dynamic resource use and food preferences in response to variable environmental conditions. Overlooking complex diet preferences of generalist fish may lead to an oversimplification of freshwater community dynamics.
  • Llewelyn, John; Strona, Giovanni; McDowell, Matthew C.; Johnson, Christopher N.; Peters, Katharina J.; Stouffer, Daniel B.; de Visser, Sara N.; Saltre, Frederik; Bradshaw, Corey J. A. (2022)
    Extinctions stemming from environmental change often trigger trophic cascades and coextinctions. Bottom-up cascades occur when changes in the primary producers in a network elicit flow-on effects to higher trophic levels. However, it remains unclear what determines a species' vulnerability to bottom-up cascades and whether such cascades were a large contributor to the megafauna extinctions that swept across several continents in the Late Pleistocene. The pathways to megafauna extinctions are particularly unclear for Sahul (landmass comprising Australia and New Guinea), where extinctions happened earlier than on other continents. We investigated the potential role of bottom-up trophic cascades in the megafauna extinctions in Late Pleistocene Sahul by first developing synthetic networks that varied in topology to identify how network position (trophic level, diet breadth, basal connections) influences vulnerability to bottom-up cascades. We then constructed pre-extinction (-80 ka) network models of the ecological community of Naracoorte, south-eastern Sahul, to assess whether the observed megafauna extinctions could be explained by bottom-up cascades. Synthetic networks showed that node vulnerability to bottom-up cascades decreased with increasing trophic level, diet breadth and basal connections. Extinct species in the Naracoorte community were more vulnerable overall to these cascades than were species that survived. The position of extinct species in the network - tending to be of low trophic level and therefore having relatively narrow diet breadths and fewer connections to plants - made them vulnerable. However, these species also tended to have few or no predators, a network-position attribute that suggests they might have been particularly vulnerable to new predators. Together, these results suggest that trophic cascades and naivety to predators could have contributed to the megafauna extinction event in Sahul.
  • McLeod, Anne; Leroux, Shawn J.; Gravel, Dominique; Chu, Cindy; Cirtwill, Alyssa R.; Fortin, Marie-Josee; Galiana, Nuria; Poisot, Timothee; Wood, Spencer A. (2021)
    Collecting well-resolved empirical trophic networks requires significant time, money and expertise, yet we are still lacking knowledge on how sampling effort and bias impact the estimation of network structure. Filling this gap is a critical first step towards creating accurate representations of ecological networks and for teasing apart the impact of sampling compared to ecological and evolutionary processes that are known to create spatio-temporal variation in network structure. We use a well-sampled spatial dataset of lake food webs to examine how sample effort influences network structure. Specifically, we predict asymptotic network properties (ANPs) for our dataset by comparing lake-specific network metrics with increasing sampling effort. We then contrast three sampling strategies - random, smallest lake to largest lake or largest lake to smallest lake - to assess which strategy best captures the regional metaweb (i.e. network of all potential interactions) network properties. We demonstrate metric-specific relationships between sample effort and network metrics, often diverging from the ANPs. For example, low sample effort can contribute to much lower and poorer estimates of closeness centralization, as compared to approximations of modularity with similar sample efforts. In fact, many network metrics (e.g. connectance) have a quadratic relationship with sample effort indicating a sampling 'sweet spot', which represents optimal sample effort for a close approximation of the ANP. Further, we find that sampling larger lakes followed by smaller lakes is a more optimal sampling strategy for capturing metaweb properties in this lentic ecosystem. Overall, we provide clear ways to better understand the impacts of sampling bias in food-web studies which may be particularly critical given the rapid increase in studies comparing food webs across space and time.
  • Taipale, Sami Johan; Kahilainen, Kimmo Kalevi; Holtgrieve, Gordon William; Peltomaa, Elina Talvikki (2018)
    The first few months of life is the most vulnerable period for fish and their optimal hatching time with zooplankton prey is favored by natural selection. Traditionally, however, prey abundance (i.e., zooplankton density) has been considered important, whereas prey nutritional composition has been largely neglected in natural settings. High-quality zooplankton, rich in both essential amino acids (EAAs) and fatty acids (FAs), are required as starting prey to initiate development and fast juvenile growth. Prey quality is dependent on environmental conditions, and, for example, eutrophication and browning are two major factors defining primary producer community structures that will directly determine the nutritional quality of the basal food sources (algae, bacteria, terrestrial matter) for zooplankton. We experimentally tested how eutrophication and browning affect the growth and survival of juvenile rainbow trout (Oncorhynchus mykiss) by changing the quality of basal resources. We fed the fish on herbivorous zooplankton (Daphnia) grown with foods of different nutritional quality (algae, bacteria, terrestrial matter), and used GC-MS, stable isotope labeling as well as bulk and compound-specific stable isotope analyses for detecting the effects of different diets on the nutritional status of fish. The content of EAAs and omega-3 (ω-3) polyunsaturated FAs (PUFAs) in basal foods and zooplankton decreased in both eutrophication and browning treatments. The decrease in ω-3 PUFA and especially docosahexaenoic acid (DHA) was reflected to fish juveniles, but they were able to compensate for low availability of EAAs in their food. Therefore, the reduced growth and survival of the juvenile fish was linked to the low availability of DHA. Fish showed very low ability to convert alpha-linolenic acid (ALA) to DHA. We conclude that eutrophication and browning decrease the availability of the originally phytoplankton-derived DHA for zooplankton and juvenile fish, suggesting bottom-up regulation of food web quality.
  • Eloranta, Antti P.; Nieminen, Petri; Kahilainen, Kimmo K. (2015)
    Introduced fishes may have major impacts on community structure and ecosystem function due to competitive and predatory interactions with native species. For example, introduced lake trout (Salvelinus namaycush) has been shown to replace native salmonids and induce major trophic cascades in some North American lakes, but few studies have investigated trophic interactions between lake trout and closely related native Arctic charr (S.alpinus) outside the natural distribution of the former species. We used stomach content and stable isotope analyses to investigate trophic interactions between introduced lake trout and native Arctic charr in large subarctic Lake Inarijarvi in northern Finland. Both salmonids had predominantly piscivorous diets at >280mm total length and were mainly caught from the deep profundal zone. However, lake trout had a more generalist diet and showed higher reliance on littoral prey fish than Arctic charr, whose diet consisted mainly of pelagic planktivorous coregonids. According to length at age and condition data, lake trout showed slightly faster growth but lower condition than Arctic charr. The results indicate that introduced lake trout may to some extent compete with and prey upon native Arctic charr, but currently have only a minor if any impact on native fishes and food web structure in Inarijarvi. Future monitoring is essential to observe potential changes in trophic interactions between lake trout and Arctic charr in Inarijarvi, as well as in other European lakes where the two salmonids currently coexist.