Browsing by Subject "FOOD-WEB"

Sort by: Order: Results:

Now showing items 1-20 of 25
  • Hagner, M.; Romantschuk, M.; Penttinen, O. -P.; Egfors, A.; Marchand, C.; Augustsson, A. (2018)
    The present study addresses toxicological properties of metal contaminated soils, using glassworks sites in south-easternl Sweden as study objects. Soil from five selected glassworks sites as well as from nearby reference areas were analysed for total and water-soluble metal concentrations and general geochemical parameters. A battery of biotests was then applied to assess the toxicity of the glassworks soil environments: a test of phytotoxicity with garden cress (Lepidium sativum); the BioTox(TM) test for toxicity to bacteria using Vibrio fischeri; and analyses of abundancies and biomass of nematodes and enchytraeids. The glassworks-and reference areas were comparable with respect to pH and the content of organic matter and nutrients (C, N, P), but total metal concentrations (Pb, As, Ba, Cd and Zn) were significantly higher at the former sites. Higher metal concentrations in the water-soluble fraction were also observed, even though these concentrations were low compared to the total ones. Nevertheless, toxicity of the glassworks soils was not detected by the two ex situ tests; inhibition of light emission by V. fischeri could not be seen, nor was an effect seen on the growth of L. sativum. A decrease in enchytraeid and nematode abundance and biomass was, however, observed for the landfill soils as compared to reference soils, implying in situ toxicity to soil-inhabiting organisms. The confirmation of in situ bioavailability and negative effects motivates additional studies of the risk posed to humans of the glassworks villages. (C) 2017 Published by Elsevier B.V.
  • Tverin, Malin; Esparza-Salas, Rodrigo; Strömberg, Annika; Tang, Patrik; Kokkonen, Iiris; Herrero, Annika; Kauhala, Kaarina; Karlsson, Olle; Tiilikainen, Raisa; Vetemaa, Markus; Sinisalo, Tuula; Käkelä, Reijo; Lundström, Karl (2019)
    The growing grey seal (Halichoerus grypus) population in the Baltic Sea has created conflicts with local fisheries, comparable to similar emerging problems worldwide. Adequate information on the foraging habits is a requirement for responsible management of the seal population. We investigated the applicability of available dietary assessment methods by comparing morphological analysis and DNA metabarcoding of gut contents (short-term diet; n = 129/125 seals, respectively), and tissue chemical markers i.e. fatty acid (FA) profiles of blubber and stable isotopes (SIs) of liver and muscle (mid- or long-term diet; n = 108 seals for the FA and SI markers). The methods provided complementary information. Short-term methods indicated prey species and revealed dietary differences between age groups and areas but for limited time period. In the central Baltic, herring was the main prey, while in the Gulf of Finland percid and cyprinid species together comprised the largest part of the diet. Perch was also an important prey in the western Baltic Proper. The DNA analysis provided firm identification of many prey species, which were neglected or identified only at species group level by morphological analysis. Liver SIs distinguished spatial foraging patterns and identified potentially migrated individuals, whereas blubber FAs distinguished individuals frequently utilizing certain types of prey. Tissue chemical markers of adult males suggested specialized feeding to certain areas and prey, which suggest that these individuals are especially prone to cause economic losses for fisheries. We recommend combined analyses of gut contents and tissue chemical markers as dietary monitoring methodology of aquatic top predators to support an optimal ecosystem-based management.
  • Luoto, Tomi P.; Ojala, Antti E.K. (2018)
    Arctic freshwater basins are diversity hotspots and sentinels of climate change, but their long-term variability and the environmental variables controlling them are not well defined. We examined four available lake sediment sequences from High Arctic Svalbard for their subfossil Chironomidae communities, biodiversity and functional traits and assessed the influence of climatic and limnological variability on the long-term ecological dynamics. Our results indicated that collector-filterers had an important role in the oligotrophic sites, whereas collector-gatherers dominated the nutrient-enriched sites with significant bird guano inputs. In the oligotrophic sites, benthic production, taxon richness and taxonomic and functional diversity were highest during the early Holocene, when temperatures showed a rapid increase. An increase in subfossil abundance and diversity metrics was also found in recent samples of the oligotrophic sites, but not in the bird-impacted sites, where the trends were decreasing. When partitioning out the environmental forcing on chironomid communities, the influence of climate was significant in all the sites, whereas in-lake production (organic matter) was significant in two of the sites and catchment erosion (magnetic susceptibility) had only minor influence. The findings suggest that major changes in Arctic chironomid assemblages were driven by climate warming with increasing diversity in oligotrophic sites, but deteriorating ecological functions in environmentally stressed sites. We found that although taxonomic and functional diversity were always coupled, taxonomical and functional turnovers were coupled only in the oligotrophic sites suggesting that the ecological functions operated by chironomids in these low-productivity sites may not be as resilient to future environmental change.
  • Parravicini, Valeriano; Casey, Jordan M.; Schiettekatte, Nina M. D.; Brandl, Simon J.; Pozas-Schacre, Chloe; Carlot, Jeremy; Edgar, Graham J.; Graham, Nicholas A. J.; Harmelin-Vivien, Mireille; Kulbicki, Michel; Strona, Giovanni; Stuart-Smith, Rick D. (2020)
    Understanding species' roles in food webs requires an accurate assessment of their trophic niche. However, it is challenging to delineate potential trophic interactions across an ecosystem, and a paucity of empirical information often leads to inconsistent definitions of trophic guilds based on expert opinion, especially when applied to hyperdiverse ecosystems. Using coral reef fishes as a model group, we show that experts disagree on the assignment of broad trophic guilds for more than 20% of species, which hampers comparability across studies. Here, we propose a quantitative, unbiased, and reproducible approach to define trophic guilds and apply recent advances in machine learning to predict probabilities of pairwise trophic interactions with high accuracy. We synthesize data from community-wide gut content analyses of tropical coral reef fishes worldwide, resulting in diet information from 13,961 individuals belonging to 615 reef fish. We then use network analysis to identify 8 trophic guilds and Bayesian phylogenetic modeling to show that trophic guilds can be predicted based on phylogeny and maximum body size. Finally, we use machine learning to test whether pairwise trophic interactions can be predicted with accuracy. Our models achieved a misclassification error of less than 5%, indicating that our approach results in a quantitative and reproducible trophic categorization scheme, as well as high-resolution probabilities of trophic interactions. By applying our framework to the most diverse vertebrate consumer group, we show that it can be applied to other organismal groups to advance reproducibility in trait-based ecology. Our work thus provides a viable approach to account for the complexity of predator-prey interactions in highly diverse ecosystems.
  • Paczkowska, Joanna; Rowe, O.F.; Figueroa, Daniela; Andersson, Agneta (2019)
    The influence of nutrient availability and light conditions on phytoplankton size-structure, nutritional strategy and production were studied in a phosphorus-poor estuary in the northern Baltic Sea receiving humic-rich river water. The relative biomass of mixotrophic nanophytoplankton peaked in spring when heterotrophic bacterial production was high, while autotrophic microphytoplankton had their maximum in summer when primary production displayed highest values. Limiting substance only showed small changes over time, and the day light was at saturating levels all through the study period. We also investigated if the phytoplankton taxonomic richness influences the production. Structured equation modelling indicated that an increase of the taxonomic richness during the warm summer combined with slightly higher phosphorus concentration lead to increased resource use efficiency, which in turn caused higher phytoplankton biomass and primary production. Our results suggest that climate warming would lead to higher primary production in northerly shallow coastal areas, which are influenced by humic-rich river run-off from un-disturbed terrestrial systems.
  • Carstensen, Jacob; Conley, Daniel J.; Almroth-Rosell, Elin; Asmala, Eero; Bonsdorff, Erik; Fleming-Lehtinen, Vivi; Gustafsson, Bo G.; Gustafsson, Camilla; Heiskanen, Anna-Stiina; Janas, Urzsula; Norkko, Alf; Slomp, Caroline; Villnäs, Anna; Voss, Maren; Zilius, Mindaugas (2020)
    The coastal zone of the Baltic Sea is diverse with strong regional differences in the physico-chemical setting. This diversity is also reflected in the importance of different biogeochemical processes altering nutrient and organic matter fluxes on the passage from land to sea. This review investigates the most important processes for removal of nutrients and organic matter, and the factors that regulate the efficiency of the coastal filter. Nitrogen removal through denitrification is high in lagoons receiving large inputs of nitrate and organic matter. Phosphorus burial is high in archipelagos with substantial sedimentation, but the stability of different burial forms varies across the Baltic Sea. Organic matter processes are tightly linked to the nitrogen and phosphorus cycles. Moreover, these processes are strongly modulated depending on composition of vegetation and fauna. Managing coastal ecosystems to improve the effectiveness of the coastal filter can reduce eutrophication in the open Baltic Sea.
  • Nevalainen, Liisa; Lami, Andrea; Luoto, Tomi P.; Manca, Marina (2014)
    We investigated 2500 years of community succession in Cladocera from the sediments of a mountain lake (Lake Piramide Inferiore) located in the Khumbu Valley close to Mt. Everest in the Nepalese Himalayas. Our objective was to determine late Holocene changes in cladoceran species composition and abundance in a biogeographical context and with respect to previous proxy-based paleolimnological data (algal pigments and organic content). The results suggested that cladoceran fauna of Lake Piramide Inferiore was species-poor and dominated by Chydorus cf. sphaericus throughout the sequence. The sediment profile recorded the occurrence of Alona guttata type individuals, which were attributed to Alona werestschagini Sinev 1999 based on their morphology and the species' current distributional range, and this was the first record of its presence in the Himalayas. In addition, a periodic long-term succession of melanic Daphnia (Ctenodaphnia) fusca Gurney, 1907 and non-melanic D. (Daphnia) dentifera Forbes 1893 was observed in the sediments. The millennia-long cladoceran community changes, although subtle due to the C. cf. sphaericus dominance, were in general agreement with the previous proxy-data of lake productivity following the regional paleoclimatic development and apparently partly driven by bottom-up mechanisms. The periodic occurrence and success of D. fusca and D. dentifera throughout the late Holocene in Lake Piramide Inferiore, combined with the knowledge of their phenotypic properties (i.e. carapace melanization) and previous investigations on their contemporary and past distribution in Khumbu Valley, suggested that they may have responded to altered underwater UV radiation regimes. Furthermore, they may have even periodically excluded each other subsequent to changes in the underwater UV environment. The results indicated the usefulness of fossil cladoceran analysis as a tool in biogeographical research, since the occurrence of species in space and time can be observed through sediment records and taxonomic identity of the remains may be resolved with the help of regional faunal distribution.
  • Coloma, Sebastian Ernesto; Gaedge, Ursula; Sivonen, Anna Kaarina; Hiltunen, Teppo Johannes (2019)
    Parasites, such as bacterial viruses (phages), can have large effects on host populations both at the ecological and evolutionary levels. In the case of cyanobacteria, phages can reduce primary production and infected hosts release intracellular nutrients influencing planktonic food web structure, community dynamics, and biogeochemical cycles. Cyanophages may be of great importance in aquatic food webs during large cyanobacterial blooms unless the host population becomes resistant to phage infection. The consequences on plankton community dynamics of the evolution of phage resistance in bloom forming cyanobacterial populations are still poorly studied. Here, we examined the effect of different frequencies of a phage-resistant genotype within a filamentous nitrogen-fixing Nodularia spumigena population on an experimental plankton community. Three Nodularia populations with different initial frequencies (0%, 5%, and 50%) of phage-resistant genotypes were inoculated in separate treatments with the phage 2AV2, the green alga Chlorella vulgaris, and the rotifer Brachionus plicatilis, which formed the experimental plankton community subjected to either nitrogen-limited or nitrogen-rich conditions. We found that the frequency of the phage-resistant Nodularia genotype determined experimental community dynamics. Cyanobacterial populations with a high frequency (50%) of the phage-resistant genotype dominated the cultures despite the presence of phages, retaining most of the intracellular nitrogen in the plankton community. In contrast, populations with low frequencies (0% and 5%) of the phage-resistant genotype were lysed and reduced to extinction by the phage, transferring the intracellular nitrogen held by Nodularia to Chlorella and rotifers, and allowing Chlorella to dominate the communities and rotifers to survive. This study shows that even though phages represent minuscule biomass, they can have key effects on community composition and eco-evolutionary feedbacks in plankton communities.
  • Hayden, B.; Harrod, C.; Thomas, S. M.; Eloranta, A. P.; Myllykangas, J.-P.; Siwertsson, A.; Praebel, K.; Knudsen, R.; Amundsen, P-A; Kahilainen, K. K. (2019)
    Climate change and the intensification of land use practices are causing widespread eutrophication of subarctic lakes. The implications of this rapid change for lake ecosystem function remain poorly understood. To assess how freshwater communities respond to such profound changes in their habitat and resource availability, we conducted a space-for-time analysis of food-web structure in 30 lakes situated across a temperature-productivity gradient equivalent to the predicted future climate of subarctic Europe (temperature +3 degrees C, precipitation +30% and nutrient +45 mu g L-1 total phosphorus). Along this gradient, we observed an increase in the assimilation of pelagic-derived carbon from 25 to 75% throughout primary, secondary and tertiary consumers. This shift was overwhelmingly driven by the consumption of pelagic detritus by benthic primary consumers and was not accompanied by increased pelagic foraging by higher trophic level consumers. Our data also revealed a convergence of the carbon isotope ratios of pelagic and benthic food web endmembers in the warmest, most productive lakes indicating that the incorporation of terrestrial derived carbon into aquatic food webs increases as land use intensifies. These results, reflecting changes along a gradient characteristic of the predicted future environment throughout the subarctic, indicate that climate and land use driven eutrophication and browning are radically altering the function and fuelling of aquatic food webs in this biome.
  • Riipinen, Katariina; Mikkola, Salla; Ahola, Milla K.; Aalto, Milla M.; Olkinuora, Alisa; Vesakoski, Outi (2017)
    Information on the habitat selection by non-indigenous species is crucial for understanding their effects on the communities to which they are introduced, since the effects are often focused on the invaded habitats. The North American mud crab Rhithropanopeus harrisii is a new invader in the northern Baltic Sea, on the coasts of Finland and Estonia. In the Finnish Archipelago Sea, it has been found in two very distinct habitats: reed belts of Phragmites australis and algal zones with Fucus vesiculosus as the main habitat-forming species. In previous studies in the Baltic Sea, R. harrisii has preferred F. vesiculosus and has locally driven a shift in the structure of F. vesiculosus-associated invertebrate communities. Here, we disentangled whether habitat choice was determined by habitat structure or the availability of food. First, we conducted a habitat selection experiment with P. australis and F. vesiculosus habitats and varying food availability, and found that R. harrisii preferred F. vesiculosus, with food having no effect on the habitat choice. Second, we studied if the preference for F. vesiculosus was due to the alga itself or the rocks it grows on. We found that R. harrisii preferred the shelter of the rock habitat, indicating that R. harrisii choose their habitat based on habitat structure rather than food availability in the habitat. However, the preference for sheltered rocky bottom habitats also exposes the associated F. vesiculosus communities to the impacts of R. harrisii through predation.
  • Ask, Jenny; Rowe, Owen; Brugel, Sonia; Stromgren, Marten; Bystrom, Par; Andersson, Agneta (2016)
    In this study, we measured depth-dependent benthic microalgal primary production in a Bothnian Bay estuary to estimate the benthic contribution to total primary production. In addition, we compiled data on benthic microalgal primary production in the entire Baltic Sea. In the estuary, the benthic habitat contributed 17 % to the total annual primary production, and when upscaling our data to the entire Bothnian Bay, the corresponding value was 31 %. This estimated benthic share (31 %) is three times higher compared to past estimates of 10 %. The main reason for this discrepancy is the lack of data regarding benthic primary production in the northern Baltic Sea, but also that past studies overestimated the importance of pelagic primary production by not correcting for system-specific bathymetric variation. Our study thus highlights the importance of benthic communities for the northern Baltic Sea ecosystem in general and for future management strategies and ecosystem studies in particular.
  • Andersson, A.; Brugel, S.; Paczkowska, J.; Rowe, O.F.; Figueroa, D.; Kratzer, S.; Legrand, C. (2018)
    Phytoplankton and heterotrophic bacteria are key groups at the base of aquatic food webs. In estuaries receiving riverine water with a high content of coloured allochthonous dissolved organic matter (ADOM), phytoplankton primary production may be reduced, while bacterial production is favoured. We tested this hypothesis by performing a field study in a northerly estuary receiving nutrient-poor, ADOM-rich riverine water, and analyzing results using multivariate statistics. Throughout the productive season, and especially during the spring river flush, the production and growth rate of heterotrophic bacteria were stimulated by the riverine inflow of dissolved organic carbon (DOC). In contrast, primary production and photosynthetic efficiency (i.e. phytoplankton growth rate) were negatively affected by DOC. Primary production related positively to phosphorus, which is the limiting nutrient in the area. In the upper estuary where DOC concentrations were the highest, the heterotrophic bacterial production constituted almost 100% of the basal production (sum of primary and bacterial production) during spring, while during summer the primary and bacterial production were approximately equal. Our study shows that riverine DOC had a strong negative influence on coastal phytoplankton production, likely due to light attenuation. On the other hand DOC showed a positive influence on bacterial production since it represents a supplementary food source. Thus, in boreal regions where climate change will cause increased river inflow to coastal waters, the balance between phytoplankton and bacterial production is likely to be changed, favouring bacteria. The pelagic food web structure and overall productivity will in turn be altered. (C) 2018 The Authors. Published by Elsevier Ltd.
  • Kainz, M. J.; Hager, H.H.; Rasconi, S.; Kahilainen, K. K.; Amundsen, P. -A.; Hayden, B. (2017)
    Trophic transfer and retention of dietary compounds are vital for somatic development, reproduction, and survival of aquatic consumers. In this field study, stable carbon and nitrogen isotopes, and fatty acids (FA) contents in invertebrates and fishes of pre-alpine Lake Lunz, Austria, were used to (1) identify the resource use and trophic level of Arctic charr (Salvelinus alpinus), pike (Esox lucius), perch (Perca fluviatilis), brown trout (Salmo trutta), roach (Rutilus rutilus), and minnow (Phoxinus phoxinus) and (2) examine how polyunsaturated fatty acids (PUFA; i.e., omega-3 and -6 PUFA) are related to total lipid status, littoral-pelagic reliance, and trophic position. Stable isotope data suggest that pike, perch, and minnow derived most of their energy from littoral resources, but minnows differed from pike and perch in their trophic position and PUFA composition. The co-occurrence of cyprinids, percids, and pike segregated these fishes into more lipid-rich (roach, minnow) and lipid-poor (pike, percids) species. Although the relatively lipid-poor pike and percids occupied a higher trophic position than cyprinids, there was a concurrent, total lipid-dependent decline in omega-3 and -6 PUFA in these predatory fishes. Results of this lake food-web study demonstrated that total lipids in fish community, littoral-pelagic reliance, and trophic position explained omega-3 and -6 PUFA in dorsal muscle tissues. Omega-3 and -6 PUFA in these fishes decreased with increasing trophic position, demonstrating that these essential FAs did not biomagnify with increasing trophic level. Finally, this lake food-web study provides evidence of fish community-level relationship between total lipid status and PUFA or stable isotope ratios, whereas the strength of such relationships was less strong at the species level.
  • Paczkowska, Joanna; Brugel, Sonia; Rowe, Owen; Lefebure, Robert; Brutemark, Andreas; Andersson, Agneta (2020)
    Climate change scenarios project that precipitation will increase in northern Europe, causing amplified inflows of terrestrial matter (tM) and inorganic nutrients to coastal areas. How this will affect the plankton community is poorly understood. A mesocosm experiment was carried out to investigate the influence of two levels of tM inputs on the composition, size-structure and productivity of a natural coastal phytoplankton community from the northern Baltic Sea. The tM addition caused browning of the water and decreased underwater light levels, while the concentrations of dissolved organic carbon (DOC) and inorganic nutrients increased. Microphytoplankton were promoted by tM addition, while in the controls picophytoplankton dominated the phytoplankton community. Inorganic nutrient availability was instrumental in defining the phytoplankton community composition and size-structure. As a response to tM addition, the phytoplankton increased their chlorophyll a content. This physiological adaptation helped to maintain high primary production rates at the low tM enrichment, but at the high tM load the primary production decreased as did the biomass of mesozooplankton. The ciliate biomass was high when the mesozooplankton biomass was low, indicating that a trophic cascade occurred in the system. Structural equation modeling showed that tM borne DOC promoted ciliates, while primary and bacterial production were disfavored. Thus, DOC originating from soils had an indirect negative effect on the mesozooplankton by reducing their food availability. Although, a positive correlation between heterotrophic bacteria and phytoplankton suggested coupling between phytoplankton produced carbon and heterotrophs growth. The results from our study indicate that river-borne DOC and inorganic nutrients have a large impact on the phytoplankton community, driving the system to the dominance of large diatoms. However, since river-borne humic substances cause browning of the water, phytoplankton increase their light harvesting pigments. At moderate inflow this helps to support the primary production, but at high inflows of terrestrial material the primary production will decrease. As high river inflows have been projected to be a consequence of climate change, we foresee that primary production will decrease in coastal areas in the future, and the impacts of such changes on the food web could be significant.
  • Attard, Karl Michel; Rodil, I.F.; Berg, Peter; Norkko, Joanna; Norkko, Alf Mattias; Glud, Ronnie (2019)
    The important role of macroalgal canopies in the oceanic carbon (C) cycle is increasingly being recognized, but direct assessments of community productivity remain scarce. We conducted a seasonal study on a sublittoral Baltic Sea canopy of the brown alga Fucus vesiculosus, a prominent species in temperate and Arctic waters. We investigated community production on hourly, daily, and seasonal timescales. Aquatic eddy covariance (AEC) oxygen flux measurements integrated ~ 40 m2 of the seabed surface area and documented considerable oxygen production by the canopy year‐round. High net oxygen production rates of up to 35 ± 9 mmol m−2 h−1 were measured under peak irradiance of ~ 1200 μmol photosynthetically active radiation (PAR) m−2 s−1 in summer. However, high rates > 15 mmol m−2 h−1 were also measured in late winter (March) under low light intensities < 250 μmol PAR m−2 s−1 and water temperatures of ~ 1°C. In some cases, hourly AEC fluxes documented an apparent release of oxygen by the canopy under dark conditions, which may be due to gas storage dynamics within internal air spaces of F. vesiculosus. Daily net ecosystem metabolism (NEM) was positive (net autotrophic) in all but one of the five measurement campaigns (December). A simple regression model predicted a net autotrophic canopy for two‐thirds of the year, and annual canopy NEM amounted to 25 mol O2 m−2 yr−1, approximately six‐fold higher than net phytoplankton production. Canopy C export was ~ 0.3 kg C m−2 yr−1, comparable to canopy standing biomass in summer. Macroalgal canopies thus represent regions of intensified C assimilation and export in coastal waters.
  • Rodil, Ivan F.; Lucena-Moya, Paloma; Tamelander, Tobias; Norkko, Joanna; Norkko, Alf (2020)
    The exchange between the water column and the seafloor is a complex process, and is particularly intensive in the shallow waters of highly productive coastal areas, where the temporal variability in the inputs of pelagic organic matter will determine many aspects of the benthic community structure. However, few studies have focused on the seasonality of inputs of organic matter to the seafloor, and on the consequent dynamics and time scales of response of benthic consumers. We conducted a 1-year study where we repeatedly sampled multiple organic compounds traditionally used as markers to study the link between the pelagic organic matter inputs and the seafloor, and the potential response of benthic macrofauna to seasonal trends in phytoplankton biomass. We simultaneously quantified the particulate organic matter in the water column, the sinking material and different seafloor compartments, and analyzed it for pigments, organic carbon and nitrogen content, C/N ratio, and stable isotopes. Seafloor sediment was also analyzed for total lipids, and the dominant macrobenthic species for isotopic signatures. Results showed a major deposition of fresh organic matter during the spring bloom followed by more degraded organic matter inputs during the late summer bloom and even lower quality of the organic matter reaching the seafloor during winter. Strong positive relationships between water column and sedimentary pigments suggest that phytoplankton was the main source of carbon to the seafloor. The isotopic signatures of the dominant macrobenthic species suggest a fast response to the organic matter inputs from the water column. However, different species responded differently to the deposition of organic matter. Macoma balthica and Marenzelleria spp. fed on more reworked and degraded sedimentary material, while Monoporeia affinis showed a shift in the feeding habits according to its life stage, with adult individuals feeding on fresher material than juveniles did. Our study highlights the seasonal variability of the benthic-pelagic coupling and the utility of a multi-marker approach to follow the temporal inputs of organic matter from the water column to the seafloor and benthic organisms.
  • Francini, G.; Hui, N.; Jumpponen, A.; Kotze, D. J.; Romantschuk, M.; Allen, J. A.; Setala, H. (2018)
    Plant functional type influences the abundance and distribution of soil biota. With time, as root systems develop, such effects become more apparent. The relationship of plant type and time with the structure and abundance of soil microbial and invertebrate communities has been widely investigated in a variety of systems. However, much less is known about long-term soil community dynamics within the context of urban environments. In this study, we investigated how soil microbes, nematodes and earthworms respond to different plant functional types (lawns only and lawns with deciduous or evergreen trees) and park age in 41 urban parks in southern Finland. As non-urban controls we included deciduous and evergreen trees in 5 forest sites. We expected that microbial biomass and the relative abundance of fungi over bacteria would increase with time. We also expected major differences in soil microbial and nematode communities depending on vegetation: we hypothesized that i) the presence of trees, and evergreens in particular, would support a greater abundance of fungi and fungal-feeding nematodes over bacteria and bacterial-feeding nematodes and ii) the fungi to bacteria ratio would be lowest in lawns, with deciduous trees showing intermediate values. In contrast to our predictions, we showed that old deciduous trees, rather than evergreens, supported the highest fungal abundances and fungal-feeding nematodes in the soil. Consistent with our predictions, microbial biomass in urban park soils tended to increase with time, whereas - in contrast to our hypotheses - fungal-feeding nematode abundance declined. Even in the oldest parks included in the current study, microbial biomass estimates never approximated those in the minimally managed natural forests, where biomass estimates were three times higher. Anecic earthworm abundance also increased with time in urban parks, whereas abundances of fungal-feeding, plant-feeding and omnivorous nematodes, as well as those of epigeic and endogeic earthworms remained constant with time and without any distinct differences between urban parks and the control forests. Our findings highlight that although urban park soils harbor diverse soil communities and considerable microbial biomass, they are distinct from adjacent natural sites in community composition and biomass.
  • Ekblad, Camilla; Eulaers, Igor; Schulz, Ralf; Stjernberg, Torsten; Søndergaard, Jens; Zubrod, Jochen; Laaksonen, Toni (2021)
    Human-induced mercury (Hg) contamination is of global concern and its effects on wildlife remain of high concern, especially in environmental hotspots such as inland aquatic ecosystems. Mercury biomagnifies through the food web resulting in high exposure in apex predators, such as the white-tailed eagle (Haliaeetus albicilla), making them excellent sentinel species for environmental Hg contamination. An expanding population of white-tailed eagles is inhabiting a sparsely populated inland area in Lapland, northern Finland, mainly around two large reservoirs flooded 50 years ago. As previous preliminary work revealed elevated Hg levels in this population, we measured Hg exposure along with dietary proxies (delta C-13 and delta N-15) in body feathers collected from white-tailed eagle nestlings in this area between 2007 and 2018. Mercury concentrations were investigated in relation to territory characteristics, proximity to the reservoirs and dietary ecology as potential driving factors of Hg contamination. Mercury concentrations in the nestlings (4.97-31.02 mu g g(-1) dw) were elevated, compared to earlier reported values in nestlings from the Finnish Baltic coast, and exceeded normal background levels (40.00 mu g g(-1)). The main drivers of Hg contamination were trophic position (proxied by delta N-15), the dietary proportion of the predatory fish pike (Esox Lucius), and the vicinity to the Porttipahta reservoir. We also identified a potential evolutionary trap, as increased intake of the preferred prey, pike, increases exposure. All in all, we present results for poorly understood freshwater lake environments and show that more efforts should be dedicated to further unravel potentially complex pathways of Hg exposure to wildlife.
  • Helenius, Laura K.; Padros, Anna Ayma; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena (2015)
    Planktivorous fish can exert strong top-down control on zooplankton communities. By incorporating different feeding strategies, from selective particulate feeding to cruising filter feeding, fish species target distinct prey. In this study, we investigated the effects of two species with different feeding strategies, the three-spined stickleback (Gasterosteus aculeatus (L.)) and roach (Rutilus rutilus (L.)), on a low-diversity brackish water zooplankton community using a 16-day mesocosm experiment. The experiment was conducted on a small-bodied spring zooplankton community in high-nutrient conditions, as well as a large-bodied summer community in low-nutrient conditions. Effects were highly dependent on the initial zooplankton community structure and hence seasonal variation. In a small-bodied community with high predation pressure and no dispersal or migration, the selective particulate-feeding stickleback depleted the zooplankton community and decreased its diversity more radically than the cruising filter-feeding roach. Cladocerans rather than copepods were efficiently removed by predation, and their removal caused altered patterns in rotifer abundance. In a large-bodied summer community with initial high taxonomic and functional diversity, predation pressure was lower and resource availability was high for omnivorous crustaceans preying on other zooplankton. In this community, predation maintained diversity, regardless of predator species. During both experimental periods, predation influenced the competitive relationship between the dominant calanoid copepods, and altered species composition and size structure of the zooplankton community. Changes also occurred to an extent at the level of nontarget prey, such as microzooplankton and rotifers, emphasizing the importance of subtle predation effects. We discuss our results in the context of the adaptive foraging mechanism and relate them to the natural littoral community.