Sort by: Order: Results:

Now showing items 1-4 of 4
  • Kikuchi, David W.; Waldron, Samuel J.; Valkonen, Janne K.; Dobler, Susanne; Mappes, Johanna (2020)
    Mullerian mimicry is a classic example of adaptation, yet Muller's original theory does not account for the diversity often observed in mimicry rings. Here, we aimed to assess how well classical Mullerian mimicry can account for the colour polymorphism found in chemically defended Oreina leaf beetles by using field data and laboratory assays of predator behaviour. We also evaluated the hypothesis that thermoregulation can explain diversity between Oreina mimicry rings. We found that frequencies of each colour morph were positively correlated among species, a critical prediction of Mullerian mimicry. Predators learned to associate colour with chemical defences. Learned avoidance of the green morph of one species protected green morphs of another species. Avoidance of blue morphs was completely generalized to green morphs, but surprisingly, avoidance of green morphs was less generalized to blue morphs. This asymmetrical generalization should favour green morphs: indeed, green morphs persist in blue communities, whereas blue morphs are entirely excluded from green communities. We did not find a correlation between elevation and coloration, rejecting thermoregulation as an explanation for diversity between mimicry rings. Biased predation could explain within-community diversity in warning coloration, providing a solution to a long-standing puzzle. We propose testable hypotheses for why asymmetric generalization occurs, and how predators maintain the predominance of blue morphs in a community, despite asymmetric generalization.
  • Briolat, Emmanuelle S; Burdfield-Steel, Emily R; Paul, Sarah C; Rönkä, Katja Helena; Seymore, Brett M; Stankowich, Theodore; Stuckert, Adam M M (2019)
    Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: genetic mechanisms, differences among predators and predator behaviour, and alternative selection pressures upon the signal. The mechanisms producing warning coloration are also important. Detailed studies of the genetic basis of warning signals in some species, most notably Heliconius butterflies, are beginning to shed light on the genetic architecture facilitating or limiting key processes such as the evolution and maintenance of polymorphisms, hybridisation, and speciation. Work on predator behaviour is changing our perception of the predator community as a single homogenous selective agent, emphasising the dynamic nature of predator-prey interactions. Predator variability in a range of factors (e.g. perceptual abilities, tolerance to chemical defences, and individual motivation), suggests that the role of predators is more complicated than previously appreciated. With complex selection regimes at work, polytypisms and polymorphisms may even occur in Mullerian mimicry systems. Meanwhile, phenotypes are often multifunctional, and thus subject to additional biotic and abiotic selection pressures. Some of these selective pressures, primarily sexual selection and thermoregulation, have received considerable attention, while others, such as disease risk and parental effects, offer promising avenues to explore. As well as reviewing the existing evidence from both empirical studies and theoretical modelling, we highlight hypotheses that could benefit from further investigation in aposematic species. Finally by collating known instances of variation in warning signals, we provide a valuable resource for understanding the taxonomic spread of diversity in aposematic signalling and with which to direct future research. A greater appreciation of the extent of variation in aposematic species, and of the selective pressures and constraints which contribute to this once-paradoxical phenomenon, yields a new perspective for the field of aposematic signalling.
  • Rönkä, Katja; Valkonen, Janne K.; Nokelainen, Ossi; Rojas, Bibiana; Gordon, Swanne; Burdfield-Steel, Emily; Mappes, Johanna (2020)
    Warning signals are predicted to develop signal monomorphism via positive frequency-dependent selection (+FDS) albeit many aposematic systems exhibit signal polymorphism. To understand this mismatch, we conducted a large-scale predation experiment in four countries, among which the frequencies of hindwing warning coloration of the aposematic moth,Arctia plantaginis,differ. Here we show that selection by avian predators on warning colour is predicted by local morph frequency and predator community composition. We found +FDS to be the strongest in monomorphic Scotland and lowest in polymorphic Finland, where the attack risk of moth morphs depended on the local avian community. +FDS was also found where the predator community was the least diverse (Georgia), whereas in the most diverse avian community (Estonia), hardly any models were attacked. Our results support the idea that spatial variation in predator communities alters the strength or direction of selection on warning signals, thus facilitating a geographic mosaic of selection.
  • Rojas, Bibiana; Burdfield-Steel, Emily; De Pasqual, Chiara; Gordon, Swanne; Hernandez, Linda; Mappes, Johanna; Nokelainen, Ossi; Ronka, Katja; Lindstedt, Carita (2018)
    Chemically defended animals often display conspicuous color patterns that predators learn to associate with their unprofitability and subsequently avoid. Such animals (i.e., aposematic), deter predators by stimulating their visual and chemical sensory channels. Hence, aposematism is considered to be "multimodal." The evolution of warning signals (and to a lesser degree their accompanying chemical defenses) is fundamentally linked to natural selection by predators. Lately, however, increasing evidence also points to a role of sexual selection shaping warning signal evolution. One of the species in which this has been shown is the wood tiger moth, Arctia plantaginis, which we here put forward as a promising model to investigate multimodality in aposematic and sexual signaling. A. plantaginis is an aposematic diurnal moth which exhibits sexually dimorphic coloration as well as sex-limited polymorphism in part of its range. The anti-predator function of its coloration and, more recently, its chemical defenses (even when experimentally decoupled from the visual signals), has been well-demonstrated. Interestingly, recent studies have revealed differences between the two male morphs in mating success, suggesting a role of coloration in mate choice or attraction, and providing a possible explanation for its sexual dimorphism in coloration. Here, we: (1) review the lines of evidence showing the role of predation pressure and sexual selection in the evolution of multimodal aposematic signals in general, and in the wood tiger moth in particular; (2) establish gaps in current research linking sexual selection and predation as selective pressures on aposematic signals by reviewing a sample of the literature published in the last 30 years; (3) highlight the need of identifying suitable systems to address simultaneously the effect of natural and sexual selection on multimodal aposematic signals; and (4) propose directions for future research to test how aposematic signals can evolve under natural and sexual selection.