Browsing by Subject "FTIR"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Hendrik, Nathaniel James (Helsingin yliopisto, 2017)
    Cocoa butter (CB) is the predominant continuous phase in chocolate systems and has a significant impact on the macroscopic properties of the end product. Conventional methods such as differential scanning calorimetry (DSC), pulsed nuclear magnetic resonance (pNMR), X-ray diffraction (XRD) and polarized light microscopy (PLM) have been used to study CB crystallization primarily in bulk. Potential of alternative techniques to study crystallization such as Raman spectroscopy and Fourier Transform infrared spectroscopy (FTIR) has been explored. The main objective of this thesis research was to study the feasibility of both conventional and alternative techniques to study CB crystallization in different matrices and in tempered conditions. Bulk fat (CB with 1%, 5% or without lecithin), suspensions (CB with 1% lecithin (on fat basis) and sucrose or inulin) and chocolates were sampled as such (non-tempered systems) subjected to a laboratory scale tempering procedure to produce tempered systems. Both non-tempered and tempered products were subjected to DSC, NMR, XRD, PLM, Raman spectroscopy, FTIR and diffusing wave spectroscopy (DWS), in which primary crystallization was monitored or long-term storage was assessed. A toolbox was developed comprising feasibility of complementary techniques and, moreover, the toolbox was used to study the effect of lecithin and bulking materials on the CB crystallization behavior. The tempering procedure was successfully validated for every sample, as proven by the melting profile at 6 hours through DSC. The determination of the solid fat content (SFC) from the raw free induction decay signal by NMR showed to be more useful than the scripted SFC, especially for bulk fat systems. XRD showed its feasibility to study fat polymorphism for both bulk matrices and suspensions, except when sucrose is present, due to its interference in short spacings. PLM could only be used for non-tempered bulk fat systems since in other systems sample preparation cannot be standardized to measure crystallinity. FTIR and Raman spectroscopy seemed to be useful complementary techniques and capable of differentiating polymorphic forms, as is also possible using XRD. DWS showed to be comparable with DSC with an additional improved deconvolution of crystallization peaks. This study resulted in a feasibility toolbox and was used to study the effect of lecithin concentration and bulking materials, where the addition of 1% lecithin concentration in bulk fat and usage of inulin in model suspensions improves the crystallization of the CB matrix.
  • Takala, Heikki; Lehtivuori, Heli K.; Berntsson, Oskar; Hughes, Ashley; Nanekar, Rahul; Niebling, Stephan; Panman, Matthijs; Henry, Leocadie; Menzel, Andreas; Westenhoff, Sebastian; Ihalainen, Janne A. (2018)
    Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with the chromophore by substituting the conserved tyrosine (Tyr(263)) in the phytochrome from the extremophile bacterium Deinococcus radiodurans with phenylalanine. Using optical and FTIR spectroscopy, X-ray solution scattering, and crystallography of chromophore-binding domain (CBD) and CBD-PHY fragments, we show that the absence of the Tyr(263) hydroxyl destabilizes the -sheet conformation of the tongue. This allowed the phytochrome to adopt an -helical tongue conformation regardless of the chromophore state, hence distorting the activity state of the protein. Our crystal structures further revealed that water interactions are missing in the Y263F mutant, correlating with a decrease of the photoconversion yield and underpinning the functional role of Tyr(263) in phytochrome conformational changes. We propose a model in which isomerization of the chromophore, refolding of the tongue, and globular conformational changes are represented as weakly coupled equilibria. The results also suggest that the phytochromes have several redundant signaling routes.
  • Strakova, Petra; Larmola, Tuula; Andres, Javier; Ilola, Noora; Launiainen, Piia; Edwards, Keith; Minkkinen, Kari; Laiho, Raija (2020)
    Evidence of plant root biomass and production in peatlands at the level of species or plant functional type (PFT) is needed for defining ecosystem functioning and predicting its future development. However, such data are limited due to methodological difficulties and the toilsomeness of separating roots from peat. We developed Fourier transform infrared (FTIR) spectroscopy based calibration models for quantifying the mass proportions of several common peatland species, and alternatively, the PFTs that these species represented, in composite root samples. We further tested whether woody roots could be classified into diameter classes, and whether dead and living roots could be separated. We aimed to solve whether general models applicable in different studies can be developed, and what would be the best way to build such models. FTIR spectra were measured from dried and powdered roots: both "pure roots", original samples of 25 species collected in the field, and "root mixtures", artificial composite samples prepared by mixing known amounts of pure roots of different species. Partial least squares regression was used to build the calibration models. The general applicability of the models was tested using roots collected in different sites or times. Our main finding is that pure roots can replace complex mixtures as calibration data. Using pure roots, we constructed generally applicable models for quantification of roots of the main PFTs of northern peatlands. The models provided accurate estimates even for far distant sites, with root mean square error (RMSE) 1.4-6.6% for graminoids, forbs and ferns. For shrubs and trees the estimates were less accurate due to higher within-species heterogeneity, partly related to variation in root diameter. Still, we obtained RMSE 3.9-10.8% for total woody roots, but up to 20.1% for different woody-root types. Species-level and dead-root models performed well within the calibration dataset but provided unacceptable estimates for independent samples, limiting their routine application in field conditions. Our PFT-level models can be applied on roots separated from soil for biomass determination or from ingrowth cores for estimating root production. We present possibilities for further development of species-level or dead-root models using the pure-root approach.
  • Reyes, Guillermo; Borghei, Maryam; King, Alistair W. T.; Lahti, Johanna; Rojas, Orlando J. (2019)
    Cellulose nanofiber films (CNFF) were treated via a welding process using ionic liquids (ILs). Acid base-conjugated ILs derived from 1,5-diazabicyclo[4.3.0]non-5-ene [DBN] and 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) were utilized. The removal efficiency of ILs from welded CNFF was assessed using liquid-state nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared spectroscopy (FTIR). The mechanical and physical properties of CNFF indicated surface plasticization of CNFF, which improved transparency. Upon treatment, the average CNFF toughness increased by 27%, and the films reached a Young's modulus of similar to 5.8 GPa. These first attempts for IL "welding" show promise to tune the surfaces of biobased films, expanding the scope of properties for the production of new biobased materials in a green chemistry context. The results of this work are highly relevant to the fabrication of CNFFs using ionic liquids and related solvents.
  • Kohl, Lukas; Koskinen, Markku; Pihlatie, Mari (2021)
    Comment on “Trees as net sinks for methane (CH4) and nitrous oxide (N2O) in the lowland tropical rain forest on volcanic Réunion Island” by Machacova et al. (2020).