Browsing by Subject "FUNCTIONAL DIVERSITY"

Sort by: Order: Results:

Now showing items 1-20 of 21
  • Herzon, Irina; Marja, Riho; Le Viol, Isabelle; Menshikova, Svetlana; Kondratyev, Aleksander (2018)
    Use of community trait-based metrics has been increasingly implemented for achieving an integrated view of biodiversity in conservation planning. We examined the extent, to which the use of community metrics based on species traits reflecting plausible sensitivity to change would contribute to our understanding of landscape characteristics of importance to the conservation of farmland birds in a poorly studied region of Northwest Russia. We collected species data on farmland from 230 transects covering a total 215 km for each year of 2008, 2010 and 2011 and analysed them using generalised linear mixed modelling. We derived community indices from species traits of habitat specialisation, trophic position, relative brain size and body mass. By relating these indices to the numbers of all species regarded farmland and Species of European Conservation Concern (SPEC), and by analysing them against the type of field and occurrence in typical non-cropped landscape elements, we showed consistent, albeit weak, congruence among the taxonomic and trait-based community descriptors. All community descriptors had their lowest estimates in arable fields. Community specialisation was the highest in open abandoned fields, which confirms the importance of such fields as refuges for regionally specialised species. Pastures were characterised by the highest community biomass, which indicates a particularly good resource base. Presence of ditches, of all non-cropped elements, had the strongest positive relationship with the community descriptors. The SPEC number strongly correlated with the overall species richness of farmland birds. A relatively weak congruence between taxonomic and trait-based community descriptors highlights their cornplementarity in understanding the underlying mechanisms of community changes. However, similarity in patterns among field types means that, under the current level of production in the region, accounting for the species richness of farmland birds seems to be sufficient to rapidly assess community sensitivity to agricultural change.
  • Ariza, Gloria Maria; Jacome, Jorge; Kotze, D. Johan (2021)
    The tropical dry forest (TDF) ecosystem is characterised by strong seasonality exasperated periodically by the El Nino/southern oscillation (ENSO). The environment produced by this event could constrain the survival of small organisms, such as insects. Carabid beetles were collected in a TDF in Armero, Colombia, during wet and dry seasons in both El Nino and non-El Nino periods. A series of traits linked to desiccation resistance were measured to characterise their adaptation to the TDF environment and to investigate changes experienced by carabid beetles during both episodes in quantitative (assemblage) and qualitative (traits) parameters. We found no difference in the presence of traits between El Nino and non-El Nino episodes, but carabid assemblages changed significantly in composition and assemblage structure between these episodes. During both periods, small-sized and nocturnal species dominated the assemblages, but in terms of number of individuals, medium and large-sized, and visual hunter species dominated. Calosoma alternans and Megacephala affinis were the most abundant species with high dispersal capacity. Carabid beetles exhibited morphological traits well-adapted to drought experienced in TDF, including when it is exasperated by ENSO. However, long-term studies can help to elucidate the real effects of ENSO and to confirm the adaptation of carabid beetles to cope with this extreme environment.
  • Marjakangas, Emma-Liina; Ovaskainen, Otso; Abrego, Nerea; Grøtan, Vidar; de Oliveira, Alexandre A.; Prado, Paulo I.; de Lima, Renato A. F. (2021)
    Species co-occurrences in local communities can arise independent or dependent on species' niches. However, the role of niche-dependent processes has not been thoroughly deciphered when generalized to biogeographical scales, probably due to combined shortcomings of data and methodology. Here, we explored the influence of environmental filtering and limiting similarity, as well as biogeographical processes that relate to the assembly of species' communities and co-occurrences. We modelled jointly the occurrences and co-occurrences of 1016 tropical tree species with abundance data from inventories of 574 localities in eastern South America. We estimated species co-occurrences as raw and residual associations with models that excluded and included the environmental effects on the species' co-occurrences, respectively. Raw associations indicate co-occurrence of species, whereas residual associations indicate co-occurrence of species after accounting for shared responses to environment. Generally, the influence of environmental filtering exceeded that of limiting similarity in shaping species' co-occurrences. The number of raw associations was generally higher than that of the residual associations due to the shared responses of tree species to the environmental covariates. Contrary to what was expected from assuming limiting similarity, phylogenetic relatedness or functional similarity did not limit tree co-occurrences. The proportions of positive and negative residual associations varied greatly across the study area, and we found a significant tendency of some biogeographical regions having higher proportions of negative associations between them, suggesting that large-scale biogeographical processes limit the establishment of trees and consequently their co-occurrences.
  • Carvalho, Jose C.; Cardoso, Pedro (2020)
    Hutchinson's n-dimensional hypervolume concept holds a central role across different fields of ecology and evolution. The question of the amount of hypervolume overlap and differentiation between species is of great interest to understand the processes that drive niche dynamics, competitive interactions and, ultimately, community assembly. A framework is proposed to decompose overall differentiation among hypervolumes into two distinct components: niche shifts and niche contraction/expansion processes. Niche shift corresponds to the replacement of space between the hypervolumes occupied by two species, whereas niche contraction/expansion processes correspond to net differences between the amount of space enclosed by each hypervolume. A procedure to implement non-continuous trait data in the estimation ofn-dimensional hypervolumes is proposed. Hypervolumes were constructed for three Darwin' finches,Geospiza conirostris,Geospiza magnirostris, andGeospiza difficilisusing intraspecific trait data. Results showed that significant niche shifts, not niche contraction, occurred betweenG. conirostrisandG. magnirostrisin Genovesa island, where they live in sympatry. This means thatG. conirostrisoccupied a different niche space and not a reduced space on Genovesa.G. difficiliswas well differentiated from the other two species. The proposed framework allows disentangling different processes underlying niche partitioning between coexisting species. This framework offers novel insights to understand the drivers of niche partitioning strategies among coexisting species.
  • Parravicini, Valeriano; Casey, Jordan M.; Schiettekatte, Nina M. D.; Brandl, Simon J.; Pozas-Schacre, Chloe; Carlot, Jeremy; Edgar, Graham J.; Graham, Nicholas A. J.; Harmelin-Vivien, Mireille; Kulbicki, Michel; Strona, Giovanni; Stuart-Smith, Rick D. (2020)
    Understanding species' roles in food webs requires an accurate assessment of their trophic niche. However, it is challenging to delineate potential trophic interactions across an ecosystem, and a paucity of empirical information often leads to inconsistent definitions of trophic guilds based on expert opinion, especially when applied to hyperdiverse ecosystems. Using coral reef fishes as a model group, we show that experts disagree on the assignment of broad trophic guilds for more than 20% of species, which hampers comparability across studies. Here, we propose a quantitative, unbiased, and reproducible approach to define trophic guilds and apply recent advances in machine learning to predict probabilities of pairwise trophic interactions with high accuracy. We synthesize data from community-wide gut content analyses of tropical coral reef fishes worldwide, resulting in diet information from 13,961 individuals belonging to 615 reef fish. We then use network analysis to identify 8 trophic guilds and Bayesian phylogenetic modeling to show that trophic guilds can be predicted based on phylogeny and maximum body size. Finally, we use machine learning to test whether pairwise trophic interactions can be predicted with accuracy. Our models achieved a misclassification error of less than 5%, indicating that our approach results in a quantitative and reproducible trophic categorization scheme, as well as high-resolution probabilities of trophic interactions. By applying our framework to the most diverse vertebrate consumer group, we show that it can be applied to other organismal groups to advance reproducibility in trait-based ecology. Our work thus provides a viable approach to account for the complexity of predator-prey interactions in highly diverse ecosystems.
  • Fattorini, Simone; Mantoni, Cristina; Di Biase, Letizia; Strona, Giovanni; Pace, Loretta; Biondi, Maurizio (2020)
    The concept of generic diversity expresses the 'diversification' of species into genera in a community. Since niche overlap is assumed to be higher in congeneric species, competition should increase generic diversity. On the other hand, generic diversity might be lower in highly selective environments, where only species with similar adaptations can survive. We used the distribution of tenebrionid beetles in Central Italy to investigate how generic diversity varies with elevation from sea level to 2400 m altitude. Generic diversity of geophilous tenebrionids decreased sharply with elevation, whereas the generic diversity of xylophilous tenebrionids showed similarly high values across the gradient. These results suggest that geophilous species are more sensitive to variation in environmental factors, and that the advantages of close relationships (similar adaptations to harsh conditions) are greater than the possible drawbacks (competition). This is consistent with the fact that geophilous tenebrionids are mostly generalist detritivores, and hence weakly affected by competition for resources. By contrast, xylophilous species are more protected from harsh/selective conditions, but more limited by competition for microhabitats and food. Our results support the environmental filtering hypothesis for the species composition of tenebrionid beetles along an elevational gradient.
  • Girardello, Marco; Santangeli, Andrea; Mori, Emiliano; Chapman, Anna; Fattorini, Simone; Naidoo, Robin; Bertolino, Sandro; Svenning, Jens-Christian (2019)
    Ensuring the persistence of biodiversity and ecosystem services represents a global challenge that need to be addressed with high urgency. Global priority areas can only be identified by means of an integrated prioritization approach that would not only preserve species numbers and ecosystem services, but also the evolutionary and functional components of diversity. In this study we combine global datasets on the distribution of mammals and birds with species traits and phylogenetic data and we identify conservation priorities for taxonomic, functional and phylogenetic diversity, as well as for three ecosystem services, including potential for carbon sequestration, pollination potential and groundwater recharge. We show that, when priority areas are identified based only on individual, e.g. functional diversity, or any combination of the three biodiversity components, these areas do not allow a sufficient protection of the three ecosystem services. However, an integrated approach whereby prioritization is based on all biodiversity components and ecosystem services would allow to identify areas that maximize protection of all ecosystem services with a minimal loss in biodiversity coverage. Our results highlight the need for an integrated conservation planning framework in order to optimally allocate resources and achieve the long-term preservation of the multiple dimensions of biodiversity and ecosystems services.
  • Rieff, Gleidson Gimenes; Natal-da-Luz, Tiago; Renaud, Mathieu; Azevedo-Pereira, Henrique M. V. S.; Chichorro, Filipe; Schmelz, Rudiger M.; Saccol de Sa, Enilson Luiz; Sousa, Jose Paulo (2020)
    Different soil management in crop cultures like maize can produce a variety of effects on soil fauna. Conventional cropping includes soil tillage, promoting organic matter losses and destruction of soil structure, whereas no-tillage cropping includes a herbicide application which can potentially affect soil fauna. In both management systems, insecticides are often used, such as pyrethroid insecticides, to prevent insect pests. Understanding the impact of these different cropping systems in their different phases on soil mesofauna and investigating the ability of soil communities to recover may provide important information to select cropping strategies which are more protective of soil biodiversity. With this aim, a terrestrial model ecosystem experiment was performed over eighty-nine days. The test treatments, all including maize, were: undisturbed soil; conventional tillage; conventional tillage with insecticide; no-tillage soil with herbicide; no-tillage soil with herbicide and insecticide. In each TME, soil samples from 0 to 5 and 5-10 cm of the top layer were collected from which collembolans and mites were identified to species, genus or subfamily level, and enchytraeid abundance was determined. Soil tillage did not affect soil communities, but insecticide application did. For collembolans and enchytraeids, the impact of the insecticide was independent of soil management, but for mites, insecticide impact was longer in conventional tillage than in no-tillage system. Changes on collembolan abundance, in general, did not promote changes in mean community trait values and functional diversity. Data suggest that no-tillage management is more protective to soil fauna than conventional tillage.
  • Coll, Lluis; Ameztegui, Aitor; Collet, Catherine; Lof, Magnus; Mason, Bill; Pach, Maciej; Verheyen, Kris; Abrudan, Loan; Barbati, Anna; Barreiro, Susana; Bielak, Kamil; Bravo-Oviedo, Andres; Ferrari, Barbara; Govedar, Zoran; Kulhavy, Jiri; Lazdina, Dagnija; Metslaid, Marek; Mohrens, Frits; Pereira, Mario; Peric, Sanja; Rasztovits, Ervin; Short, Ian; Spathelf, Peter; Sterba, Hubert; Stojanovic, Dejan; Valsta, Lauri; Zlatanov, Tzvetan; Ponette, Quentin (2018)
    Research into mixed-forests has increased substantially in the last decades but the extent to which the new knowledge generated meets practitioners' concerns and is adequately transmitted to them is unknown. Here we provide the current state of knowledge and future research directions with regards to 10 questions about mixed forest functioning and management identified and selected by a range of European forest managers during an extensive participatory process. The set of 10 questions were the highest ranked questions from an online prioritization exercise involving 168 managers from 22 different European countries. In general, the topics of major concern for forest managers coincided with the ones that are at the heart of most research projects. They covered important issues related to the management of mixed forests and the role of mixtures for the stability of forests faced with environmental changes and the provision of ecosystem services to society. Our analysis showed that the current scientific knowledge about these questions was rather variable and particularly low for those related to the management of mixed forests over time and the associated costs. We also found that whereas most research projects have sought to evaluate whether mixed forests are more stable or provide more goods and services than monocultures, there is still little information on the underlying mechanisms and trade-offs behind these effects. Similarly, we identified a lack of knowledge on the spatio-temporal scales at which the effects of mixtures on the resistance and adaptability to environmental changes are operating. Our analysis may help researchers to identify what knowledge needs to be better transferred and to better design future research initiatives meeting practitioner's concerns.
  • Mengual, Ximo; Ståhls, Gunilla; Skevington, Jeffrey H. (2020)
    Phylogenetic relationships of theSphaerophorialineage (SphaerophoriaLe Peletier & Audinet-Serville and related genera) were inferred based on molecular characters, with the specific aim to infer the phylogenetic placement of the AfrotropicalSphaerophoriaspecies andLoveridgeana beattieivan Doesburg & van Doesburg. Three molecular markers were used, i.e., the mitochondrial protein-coding gene cytochrome c oxidase subunit I (COI) and the nuclear 28S and 18S ribosomal RNA genes. TheSphaerophorialineage generaExallandraVockeroth andLoveridgeanawere resolved within the genusSphaerophoria, and the IndomalayanEosphaerophoriaFrey was placed sister toCitrogrammaVockeroth, both related to a large species radiation from the New World.FaziaShannon andAllograptaOsten Sacken were recovered as non-monophyletic. Our results recovered two differentFaziaclades with dissimilar natural history resulted from our analyses, andAllograptaspecies were resolved into two clades, one with Nearctic and Neotropical species and a second clade with species from Oceanian, Indomalayan and Afrotropical Regions.Exallandrais considered a subgenus ofSphaerophoria,S. (Exallandra)stat. rev.,andSphaerophoria cinctifacies(Speiser)n. comb.a member of this subgenus together withS. loewiiZetterstedt. A newSphaerophoriasubgenus is designatedS.(Loveridgeana)stat. rev.to includeS. beattiein. comb.and the South African species, i.e.,S. quadrituberculataBezzi,S. retrocurvaHull, andS. aff.retrocurva. Based on their phylogenetic distinctiveness, functional traits, and ecological relevance we do recommend further ecological study and protection efforts for this Afrotropical group of pollinators.
  • Rissanen, Kaisa; Martin-Guay, Marc-Olivier; Riopel-Bouvier, Anne-Sophie; Paquette, Alain (2019)
    Biodiversity affects ecosystem functioning in forests by, for example, enhancing growth and altering the forest structure towards greater complexity with cascading effects on other processes and trophic levels. Complexity in forest canopy could enhance light interception and form a link between diversity and productivity in polyculture forests, but the effect of canopy structure on light interception is rarely directly measured. We modelled the canopy surface structure of a tree diversity experiment by photographing it using unmanned aerial vehicle (UAV) and combining the photos into a digital elevation model with photogrammetry tools. We analysed the effects of tree diversity and functional diversity on canopy structural complexity and light interception with a structural equation model. Our results show that: a) increased structural complexity of the canopy reduces light interception, whereas b) tree diversity increases the structural complexity of the canopy, and has a dual impact on light interception. Tree diversity decreased light interception through the structural complexity of the canopy but increased it probably through canopy packing and crown complementarity. However, the effects of both tree diversity and structural complexity of canopy were smaller than the effect of the functional identities of the tree species, especially the differences between deciduous and evergreen trees. We conclude that more complexity in canopy structure can be gained through increased tree diversity, but complex canopy structure does not increase light interception in young forests.
  • Milardi, Marco; Gavioli, Anna; Castaldelli, Giuseppe; Soininen, Janne (2019)
    We investigated the relationships between exotic freshwater fish invasions, environmental factors and ecofunctional diversity (i.e. the combination of ecological traits in communities) in streams. We used data from 335 stream sites, belonging to 105 watersheds and 3 basins in Italy, to test whether the exotic species invasion was dominated by species with generalist traits and whether the environment-ecofunctional trait relationships of exotic and native species would differ from each other. We also tested the hypothesis that ecofunctional uniqueness patterns between exotic and native species would be substantially different. We found that generalist traits were widespread in nearly all areas where exotic species occurred, but not all generalist traits were equally abundant in exotic communities. Only temperature tolerant, low oxygen tolerant and eurytopic traits were typically more dominant in exotic communities than native ones, suggesting that not all generalist traits are equally important in the invasion process and that more complex mechanisms of trait selection could take place. Environment-ecofunctional trait relationships of exotic and native species partly differed both in direction and magnitude, suggesting that invasion dynamics could decouple the linkage between environment and biotic communities, but also that this decoupling might decrease at later invasion stages (i.e. > 30 years after major invasions). Finally, site and trait ecofunctional uniqueness differed between exotic and native species. Exotic species ecofunctional diversity hotspots were located in human-disturbed areas, suggesting that human disturbance might play a strong role in invasion patterns. We advocate for a wider use of ecofunctional approaches in conservation studies in the future, as they could be a key to understand complex ecological processes such as exotic invasions.
  • Yu, Lei; Song, Mengya; Xia, Zhichao; Korpelainen, Helena; Li, Chunyang (2019)
    Although extensive research has been conducted on the temporal dynamics of plant-plant interactions, little is known about the effect of phosphorus (P) availability. In this study, Abies fabri and Picea brachytyla seedlings were collected from the late-stage Hailuogou glacier retreat area and grown under different P regimes (control and P fertilization) from year 2015 to 2016 in a common garden experiment to investigate whether plant-plant interactions are modulated by P availability. We found that P fertilization affected the relative competition intensity (RCI). Under control conditions in 2015, the growth of A. fabri was facilitated by the presence of P. brachytyla. Under P fertilization, the facilitative effect was more intensive: the leaf, stem and total biomass of A. fabri significantly increased under interspecific interaction compared with intraspecific interaction, but no effect was found in P. brachytyla. RCI showed similar tendencies both in 2015 and 2016. In addition, plant-plant interactions and P fertilization caused temporal variation in C, N, P and non-structural carbohydrate (NSC) contents. The growth of A. fabri greatly benefited from the presence of P. brachytyla when exposed to P fertilization and showed higher biomass, and C, N, P and NSC accumulations. Our results demonstrated interactive effects between environmental conditions (i.e. P availability) and plant-plant interactions that are closely related to resource accumulation.
  • Laaksonen, Mervi; Punttila, Pekka; Siitonen, Juha; Ovaskainen, Otso (2020)
    Boreal forests have been intensively managed, influencing the spatiotemporal occurrence of dead wood, and leading to changes in saproxylic species assemblages. Some particular traits, such as habitat specialization, can be expected to make species sensitive to alterations in the amount, dynamics and heterogeneity of dead-wood habitats. We compared the saproxylic beetle assemblages of 320 dead standing Scots pines within 52 pine forest stands in three regions in Finland and Russia with contrasting forest-use history. We used the joint species distribution model of Hierarchical Modelling of Species Communities (HMSC) to analyze how the beetle communities respond to alteration of forest structure. We applied scenario simulations to examine relationships between selected species traits and environmental gradients. Our results show that tree-level characteristics were the most important variables shaping the community composition in dead standing pines, but that also the characteristics of the forest stand as well as the larger-scale landscape context affected assemblage composition. Most importantly, managed forest stands and managed forest landscapes had lost species that are specialized in their resource use. The generalist species thriving in managed forest stands and managed forest landscapes were able to utilize dead wood of small diameter and man-made dead wood types, such as cut stumps and logging residues. We conclude that forest management not only reduces the amount of resources for saproxylic beetles locally, but has also landscape-level effects so that the most vulnerable species with specialized resource use and short-lived substrates can be lost also from remnant natural forest patches embedded in managed landscapes.
  • Mod, Heidi K.; Chevalier, Mathieu; Luoto, Miska; Guisan, Antoine (2020)
    A comprehensive understanding of the scale dependency of environmental filtering and biotic interactions influencing the local assembly of species is paramount to derive realistic forecasts of the future of biodiversity and efficiently manage ecological communities. A classical assumption is that environmental filters are more prevalent at coarser scales with diminishing effects towards the finest scales where biotic interactions become more decisive. Recently, a refinement was proposed stipulating that the scale dependency of biotic interactions should relate to the type of interaction. Specifically, the effect of negative interactions (e.g. competition) should diminish with coarsening scale, whereas positive interactions (i.e. facilitation) should be detected irrespective of the scale. We use multiple vascular plant species datasets sampled at nested spatial scales (plot size varying from 0.04 to 64 m(2)) and recently developed joint species distribution models to test the hypotheses. Our analyses indicate slightly stronger environmental filtering with increasing plot size. While the overall strength of biotic interactions did not vary consistently across scales, we found a tendency for negative interactions to fade away with increasing plot size slightly more than positive interactions. Synthesis. We provide partial, but not unambiguous, evidence of the scale dependency of ecological assembly rules. However, our correlative methodology only allows us to interpret the findings as indication of environmental filtering and biotic interactions.
  • Helenius, Laura K.; Padros, Anna Ayma; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena (2015)
    Planktivorous fish can exert strong top-down control on zooplankton communities. By incorporating different feeding strategies, from selective particulate feeding to cruising filter feeding, fish species target distinct prey. In this study, we investigated the effects of two species with different feeding strategies, the three-spined stickleback (Gasterosteus aculeatus (L.)) and roach (Rutilus rutilus (L.)), on a low-diversity brackish water zooplankton community using a 16-day mesocosm experiment. The experiment was conducted on a small-bodied spring zooplankton community in high-nutrient conditions, as well as a large-bodied summer community in low-nutrient conditions. Effects were highly dependent on the initial zooplankton community structure and hence seasonal variation. In a small-bodied community with high predation pressure and no dispersal or migration, the selective particulate-feeding stickleback depleted the zooplankton community and decreased its diversity more radically than the cruising filter-feeding roach. Cladocerans rather than copepods were efficiently removed by predation, and their removal caused altered patterns in rotifer abundance. In a large-bodied summer community with initial high taxonomic and functional diversity, predation pressure was lower and resource availability was high for omnivorous crustaceans preying on other zooplankton. In this community, predation maintained diversity, regardless of predator species. During both experimental periods, predation influenced the competitive relationship between the dominant calanoid copepods, and altered species composition and size structure of the zooplankton community. Changes also occurred to an extent at the level of nontarget prey, such as microzooplankton and rotifers, emphasizing the importance of subtle predation effects. We discuss our results in the context of the adaptive foraging mechanism and relate them to the natural littoral community.
  • Villnäs, Anna Pia Maria; Hewitt, Judi; Snickars, Martin; Westerbom, Mats; Norkko, Alf Mattias (2018)
    Understanding large-scale spatial variation in ecosystem properties and associated functionality is key for successful conservation of ecosystems. This study provides a template for how to estimate differences in ecosystem functionality over large spatial scales by using groupings of biological traits. We focus on trait groupings that describe three important benthic ecosystem properties, namely bioturbation, community stability, and juvenile dispersal. Recognizing that groups of traits interact and are constrained within an organism, we statistically define important functional trait subgroups that describe each ecosystem property. The sub-groups are scored according to their weighted ecological impact to gain an overall estimation of the cumulative expression of each ecosystem property at individual sites. Furthermore, by assigning each property a value relative to its observed maximum, and by summing up the individual property values, we offer an estimate of benthic ecosystem multifunctionality. Based on a spatially extensive benthic data set, we were able to identify coastal areas with high and low potential for the considered benthic ecosystem properties and the measure of ecosystem multifunctionality. Importantly, we show that a large part of the spatial variation in functional trait sub-groups and in benthic ecosystem multifunctionality was explained by environmental change. Our results indicate that through this simplification it is possible to estimate the functionality of the seafloor. Such information is vital in marine spatial planning efforts striving to balance the utilization with the preservation of natural resources.
  • Kärnä, Olli-Matti; Heino, Jani; Grönroos, Mira; Hjort, Jan (2018)
    Geodiversity, i.e. the variety of the abiotic environment, is considered to be positively correlated to biodiversity. In streams, the importance of physical heterogeneity for biodiversity variation is well known, but the usefulness of explicitly measured geodiversity indices to account for biodiversity has not been tested. We developed a technique to measure in-stream geodiversity, based on different types of stream flow, geomorphological processes and landforms observed from photographs taken during the field work, and substrates based on traditional field observations. We further tested the utility of these geodiversity measures in explaining variation in the biodiversity of macroinvertebrates in near-pristine streams. Our specific objective was to examine the explanatory power of geodiversity compared to traditional environmental variables, such as water chemistry, depth and current velocity. While most biodiversity indices correlated more strongly with traditional environmental variables, the influence of geodiversity on biodiversity was also evident. Unique effect of flow richness on species richness and that of total geodiversity on functional richness were higher than those of the traditional environmental variables. Our findings suggested that in-stream geodiversity offers a valuable concept for characterizing stream habitats. If further developed and tested, in-stream geodiversity can be used as a cost-efficient proxy to explain variation in biodiversity in stream environments.
  • Florencio, Margarita; Lobo, Jorge M.; Cardoso, Pedro; Almeida-Neto, Mario; Borges, Paulo A. V. (2015)
    Human-caused disturbances can lead to the extinction of indigenous (endemic and native) species, while facilitating and increasing the colonisation of exotic species; this increase can, in turn, promote the similarity of species compositions between sites if human-disturbed sites are consistently invaded by a regionally species-poor pool of exotic species. In this study, we analysed the extent to which epigean arthropod assemblages of four islands of the Azorean archipelago are characterised by nestedness according to a habitat-altered gradient. The degree of nestedness represents the extent to which less ubiquitous species occur in subsets of sites occupied by the more widespread species, resulting in an ordered loss/gain of species across environmental or ecological gradients. A predictable loss of species across communities while maintaining others may lead to more similar communities (i.e. lower beta-diversity). In contrast, anti-nestedness occurs when different species tend to occupy distinct sites, thus characterising a replacement of species across such gradients. Our results showed that an increase in exotic species does not promote assemblage homogenisation at the habitat level. On the contrary, exotic species were revealed as habitat specialists that constitute new and well-differentiated assemblages, even increasing the species compositional heterogeneity within human-altered landscapes. Therefore, contrary to expectations, our results show that both indigenous and exotic species established idiosyncratic assemblages within habitats and islands. We suggest that both the historical extinction of indigenous species in disturbed habitats and the habitat-specialised character of some exotic invasions have contributed to the construction of current assemblages.
  • Weigel, Benjamin; Bonsdorff, Erik (2018)
    Increasing environmental pressures and human impacts are reshaping community structures and species interactions throughout all trophic levels. The morphological and behavioural characteristics of species communities contain key ecological information on why prey species appear attractive to predators but are rarely applied when exploring predator-prey (PP) relationships. Expanding our knowledge on how changing prey communities can alter the food resource suitability (RS) for predators is vital for understanding PP dynamics in changing ecosystems. Detailed predator diet data are commonly restricted to commercially important species and often not available over long temporal scales. To find out whether structural changes of prey communities impact the food RS for predator communities over space and time, we apply a novel framework to describe and interpret changes in predator diet-suitability based on predation-relevant traits of prey. We use information on described feeding links from the literature to compile the prey spectrum for each predator and subsequently translate the prey-species into a prey-trait spectrum. For each predator, we then calculate a frequency-based prey-trait affinity score and relate it to the available food resource pool, the community weighted means of prey traits, resulting in a prey-suitability measure. We aim to reveal whether a described multi-decadal change in the community structure of zoobenthos had an impact on the food suitability for the benthic-feeding fish in a coastal system of the Baltic Sea. We assess the direction of change in resource quality from the perspective of benthic-feeding fish and describe predator-specific responses to examine which species are likely to profit or be disadvantaged by changes in their prey spectrum. Furthermore, we test the relationship between functional diversity of prey communities and food suitability for predators, and whether predation linkage-structures are affected through prey community-changes. Our results show that changes in zoobenthic communities had a positive effect on the food suitability for most benthic-feeding fish, implying more suitable food resources. Species-specific responses of predators suggest varying plasticity to cope with prey assemblages of different trait compositions. Additionally, the functional diversity of zoobenthos had a positive effect on the food suitability for predator fish. The changing trait compositions of prey influenced the PP linkage-structure, indicating varying specialisation of benthic feeding fish towards available food resources. Our findings suggest that changing morphological characteristics of prey can impact food RS features for its predators. This approach enables long-term evaluation of prey quality characteristics where no detailed diet data is available and allows for cross-system comparison as it is not relying on taxonomic identities per se.