Browsing by Subject "FUNGAL"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Maki, Jenni M.; Kirjavainen, Pirkka V.; Täubel, Martin; Piippo-Savolainen, Eija; Backman, Katri; Hyvarinen, Anne; Tuoresmaki, Pauli; Jayaprakash, Balamuralikrishna; Heinrich, Joachim; Herberth, Gunda; Standl, Marie; Pekkanen, Juha; Karvonen, Anne M. (2021)
    Living with dogs appears to protect against allergic diseases and airway infections, an effect possibly linked with immunomodulation by microbial exposures associated with dogs. The aim of this study was to characterize the influence of dog ownership on house dust microbiota composition. The bacterial and fungal microbiota was characterized with Illumina MiSeq sequencing from floor dust samples collected from homes in a Finnish rural-suburban (LUKAS2, N=182) birth cohort, and the results were replicated in a German urban (LISA, N=284) birth cohort. Human associated bacteria variable was created by summing up the relative abundances of five bacterial taxa. Bacterial richness, Shannon index and the relative abundances of seven bacterial genera, mostly within the phyla Proteobacteria and Firmicutes, were significantly higher in the dog than in the non-dog homes, whereas the relative abundance of human associated bacteria was lower. The results were largely replicated in LISA. Fungal microbiota richness and abundance of Leucosporidiella genus were higher in dog homes in LUKAS2 and the latter association replicated in LISA. Our study confirms that dog ownership is reproducibly associated with increased bacterial richness and diversity in house dust and identifies specific dog ownership-associated genera. Dogs appeared to have more limited influence on the fungal than bacterial indoor microbiota.
  • Ruiz-Jimenez, Jose; Okuljar, Magdalena; Sietiö, Outi-Maaria; Demaria, Giorgia; Liangsupree, Thanaporn; Zagatti, Elisa; Aalto, Juho; Hartonen, Kari; Heinonsalo, Jussi; Bäck, Jaana; Petäjä, Tuukka; Riekkola, Marja-Liisa (2021)
    Primary biological aerosol particles (PBAPs) play an important role in the interaction between biosphere, atmosphere, and climate, affecting cloud and precipitation formation processes. The presence of pollen, plant fragments, spores, bacteria, algae, and viruses in PBAPs is well known. In order to explore the complex interrelationships between airborne and particulate chemical tracers (amino acids, saccharides), gene copy numbers (16S and 18S for bacteria and fungi, respectively), gas phase chemistry, and the particle size distribution, 84 size-segregated aerosol samples from four particle size fractions (< 1.0, 1.0-2.5, 2.5-10, and > 10 mu m) were collected at the SMEAR II station, Finland, in autumn 2017. The gene copy numbers and size distributions of bacteria, Pseudomonas, and fungi in biogenic aerosols were determined by DNA extraction and amplification. In addition, free amino acids (19) and saccharides (8) were analysed in aerosol samples by hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS). Different machine learning (ML) approaches, such as cluster analysis, discriminant analysis, neural network analysis, and multiple linear regression (MLR), were used for the clarification of several aspects related to the composition of biogenic aerosols. Clear variations in composition as a function of the particle size were observed. In most cases, the highest concentration values and gene copy numbers (in the case of microbes) were observed for 2.5-10 mu m particles, followed by > 10, 1-2.5, and < 1.0 mu m particles. In addition, different variables related to the air and soil temperature, the UV radiation, and the amount of water in the soil affected the composition of biogenic aerosols. In terms of interpreting the results, MLR provided the greatest improvement over classical statistical approaches such as Pearson correlation among the ML approaches considered. In all cases, the explained variance was over 91 %. The great variability of the samples hindered the clarification of common patterns when evaluating the relation between the presence of microbes and the chemical composition of biogenic aerosols. Finally, positive correlations were observed between gas-phase VOCs (such as acetone, toluene, methanol, and 2-methyl-3-buten-2-ol) and the gene copy numbers of microbes in biogenic aerosols.
  • Pino-Bodas, Raquel; Stenroos, Soili (2021)
    The diversity of lichen photobionts is not fully known. We studied here the diversity of the photobionts associated with Cladonia, a sub-cosmopolitan genus ecologically important, whose photobionts belong to the green algae genus Asterochloris. The genetic diversity of Asterochloris was screened by using the ITS rDNA and actin type I regions in 223 specimens and 135 species of Cladonia collected all over the world. These data, added to those available in GenBank, were compiled in a dataset of altogether 545 Asterochloris sequences occurring in 172 species of Cladonia. A high diversity of Asterochloris associated with Cladonia was found. The commonest photobiont lineages associated with this genus are A. glomerata, A. italiana, and A. mediterranea. Analyses of partitioned variation were carried out in order to elucidate the relative influence on the photobiont genetic variation of the following factors: mycobiont identity, geographic distribution, climate, and mycobiont phylogeny. The mycobiont identity and climate were found to be the main drivers for the genetic variation of Asterochloris. The geographical distribution of the different Asterochloris lineages was described. Some lineages showed a clear dominance in one or several climatic regions. In addition, the specificity and the selectivity were studied for 18 species of Cladonia. Potentially specialist and generalist species of Cladonia were identified. A correlation was found between the sexual reproduction frequency of the host and the frequency of certain Asterochloris OTUs. Some Asterochloris lineages co-occur with higher frequency than randomly expected in the Cladonia species.
  • Karhu, Kristiina; Alaei, Saeed; Li, Jian; Merilä, Päivi; Ostonen, Ivika; Bengtson, Per (2022)
    During the last decade it has been increasingly acknowledged that carbon (C) contained in root exudates can accelerate decomposition of soil organic matter (SOM), a phenomenon known as rhizosphere priming effect (RPE). However, the controlling factors and the role of different soil microorganisms in RPE are not yet well understood. There are some indications that the response of the soil microbial decomposers to labile C input in the rhizosphere depends on microbial demand of nutrients for growth and maintenance, especially that of C and nitrogen (N). To test this hypothesis, we assessed SOM decomposition induced by 13C-glucose additions during one week in forest soils with different C:N ratios (11.5–22.2). We estimated SOM respiration, the potential activity (concentration) of a range of extracellular enzymes, and incorporation of 13C and deuterium (D) in microbial phospholipid fatty acids (PLFAs). Glucose additions induced positive priming (a 12–52% increase in SOM respiration) in all soil types, but there was no linear relationship between priming and the soil C:N ratio. Instead, priming of SOM respiration was positively linked to the C:N imbalance, where a higher C:N imbalance implies stronger microbial N limitation. The total oxidative enzyme activity and the ratio between the activities of C and N acquiring enzymes were lower in soil with higher C:N ratios, but these findings could not be quantitatively linked to the observed priming rates. It appears as if glucose addition resulted in priming by stimulating the activity rather than the concentration of oxidative enzymes. Microbial incorporation of D and 13C into in PLFAs demonstrated that glucose additions stimulated both fungal and bacterial growth. The increased growth was mainly supported by glucose assimilation in fungi, while the increase in bacterial growth partly was a result of increased availability of C or N released from SOM. Taken together, the findings suggest that the soil C:N ratio is a poor predictor of priming and that priming is more dependent on the C:N imbalance, which reflects both microbial nutrient demand and nutrient provision.
  • Kohl, Lukas; Myers-Pigg, Allison; Edwards, Kate A.; Billings, Sharon A.; Warren, Jamie; Podrebarac, Frances; Ziegler, Susan E. (2021)
    Plant litter chemistry is altered during decomposition but it remains unknown if these alterations, and thus the composition of residual litter, will change in response to climate. Selective microbial mineralization of litter components and the accumulation of microbial necromass can drive litter compositional change, but the extent to which these mechanisms respond to climate remains poorly understood. We addressed this knowledge gap by studying needle litter decomposition along a boreal forest climate transect. Specifically, we investigated how the composition and/or metabolism of the decomposer community varies with climate, and if that variation is associated with distinct modifications of litter chemistry during decomposition. We analyzed the composition of microbial phospholipid fatty acids (PLFA) in the litter layer and measured natural abundance δ13C-PLFA values as an integrated measure of microbial metabolisms. Changes in litter chemistry and δ13C values were measured in litterbag experiments conducted at each transect site. A warmer climate was associated with higher litter nitrogen concentrations as well as altered microbial community structure (lower fungi:bacteria ratios) and microbial metabolism (higher δ13C-PLFA). Litter in warmer transect regions accumulated less aliphatic-C (lipids, waxes) and retained more O-alkyl-C (carbohydrates), consistent with enhanced 13C-enrichment in residual litter, than in colder regions. These results suggest that chemical changes during litter decomposition will change with climate, driven primarily by indirect climate effects (e.g. greater nitrogen availability and decreased fungi:bacteria ratios) rather than direct temperature effects. A positive correlation between microbial biomass δ13C values and 13C-enrichment during decomposition suggests that change in litter chemistry is driven more by distinct microbial necromass inputs than differences in the selective removal of litter components. Our study highlights the role that microbial inputs during early litter decomposition can play in shaping surface litter contribution to soil organic matter as it responds to climate warming effects such as greater nitrogen availability.
  • Kabel, Mirjam A.; Jurak, Edita; Mäkelä, Miia R.; de Vries, Ronald P. (2017)
    The white button mushroom Agaricus bisporus is economically the most important commercially produced edible fungus. It is grown on carbon- and nitrogen-rich substrates, such as composted cereal straw and animal manure. The commercial mushroom production process is usually performed in buildings or tunnels under highly controlled environmental conditions. In nature, the basidiomycete A. bisporus has a significant impact on the carbon cycle in terrestrial ecosystems as a saprotrophic decayer of leaf litter. In this mini-review, the fate of the compost plant cell wall structures, xylan, cellulose and lignin, is discussed. A comparison is made from the structural changes observed to the occurrence and function of enzymes for lignocellulose degradation present, with a special focus on the extracellular enzymes produced by A. bisporus. In addition, recent advancements in whole genome level molecular studies in various growth stages of A. bisporus in compost are reviewed.
  • Rinta-Kanto, Johanna M.; Timonen, Sari (2020)
    Mycorrhizal fungi have a strong impact on soil biota. In this study, bacterial and archaeal populations in different parts of Suillus bovinus - Pinus sylvestris mycorrhizospheres in boreal forest were quantified and identified by DNA analysis. The numbers of bacterial and archaeal 16S rRNA gene copies were highest in uncolonized humus and lowest in fruiting bodies. The numbers of bacterial 16S rRNA gene copies varied from 1.3 x 10(7) to 3.1 x 10(9) copies g(-1) fw and archaeal copies from 4.1 x 10(7) to 9.6 x 10(8) copies g(-1) fw. The relatively high number of archaeal 16S rRNA gene copies was likely due to the cold and highly organic habitat. The presence of hyphae appeared to further promote archaeal numbers and the archaea:bacteria ratio was over one in samples containing only fungal material. Most detected archaea belonged to terrestrial Thaumarchaeota. Proteobacteria, Actinobacteria and Acidobacteria were predictably the dominating bacterial taxa in the samples with clear trend of Betaproteobacteria preferring the pine root habitats.
  • Aaltonen, Heidi; Palviainen, Marjo; Zhou, Xuan; Köster, Egle; Berninger, Frank; Pumpanen, Jukka; Köster, Kajar (2019)
    Climate warming in arctic/subarctic ecosystems will result in increased frequency of forest fires, elevated soil temperatures and thawing of permafrost, which have implications for soil organic matter (SOM) decomposition rates, the CO2 emissions and globally significant soil C stocks in this region. It is still unclear how decomposability and temperature sensitivity of SOM varies in different depths and different stages of succession following forest fire in permafrost regions and studies on long term effects of forest fires in these areas are lacking. To study this question, we took soil samples from 5, 10 and 30 cm depths from forest stands in Northwest Canada, underlain by permafrost, that were burnt by wildfire 3, 25 and over 100 years ago. We measured heterotrophic soil respiration at 1, 7, 13 and 19 °C. Fire had a significant effect on the active layer depth, and it increased the temperature sensitivity (Q10) of respiration in the surface (5 cm) and in the deepest soil layer (30 cm) in the 3-year-old area compared to the 25- and more than 100-year-old areas. Also the metabolic quotient (qCO2) of soil microbes was increased after fire. Though fires may facilitate the SOM decomposition by increasing active layer depth, they also decreased SOM quality, which may limit the rate of decomposition. After fire all of these changes reverted back to original levels with forest succession.
  • Zhou, Xuan; Sun, Hui; Sietiö, Outi-Maaria; Pumpanen, Jukka; Heinonsalo, Jussi; Köster, Kajar; Berninger, Frank (2020)
    Boreal forests in permafrost zone store significant quantities of carbon that are readily threatened by increases in fire frequency and temperature due to climate change. Soil carbon is primarily released by microbial decomposition that is sensitive to environmental conditions. Under increasing disturbances of wildfire, there is a pressing need to understand interactions between wildfires and microbial communities, thereby to predict soil carbon dynamics. Using Illumina MiSeq sequencing of bacterial 16S rDNA and GeoChip 5.0K, we compared bacterial communities and their potential functions at surface and near-surface permafrost layers across a chronosequence (>100 years) of burned forests in a continuous permafrost zone. Postfire soils in the Yukon and the Northwest Territories, Canada, showed a marked increase in active layer thickness. Our results showed that soil bacterial community compositions and potential functions altered in 3-year postfire forest (Fire3) comparing to the unburned forests. The relative abundance of Ktedonobacteria (Chloroflexi) was higher in Fire3 surface soils, while Alphaproteobacteria and Betaproteobacteria (Proteobacteria) were more abundant in unburned ones. Approximately 37% of the variation in community composition can be explained by abiotic variables, whereas only 2% by biotic variables. Potential functional genes, particularly for carbon degradation and anammox, appeared more frequent in Fire3 than in unburned soils. Variations in functional gene pools were mainly driven by environmental factors (39%) and bacterial communities (20%; at phylum level). Unexpectedly, wildfire solely altered bacterial communities and their functional potentials of the surface layers, not the near-permafrost layers. Overall, the response of bacterial community compositions and functions to wildfire and the environment provides insights to re-evaluate the role of bacteria in decomposition.