Browsing by Subject "Fennoskandia"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • Brittain, John E.; Heino, Jani; Friberg, Nikolai; Aroviita, Jukka; Kahlert, Maria; Karjalainen, Satu‐Maaria; Keck, François; Lento, Jennifer; Liljaniemi, Petri; Mykrä, Heikki; Schneider, Susanne C.; Ylikörkkö, Jukka (Blackwell Scientific, 2022)
    Freshwater Biology
    1. Arctic freshwaters support biota adapted to the harsh conditions at these latitudes, but the climate is changing rapidly and so are the underlying environmental filters. Currently, we have limited understanding of broad-scale patterns of Arctic riverine biodiversity and the correlates of α- and β-diversity. 2. Using information from a database set up within the scope of the Arctic Council's Conservation of Arctic Flora and Fauna Circumpolar Biodiversity Monitoring Plan, we analysed patterns and correlates of α- and β-diversity in benthic diatom and macroinvertebrate communities across northern Norway, Sweden, and Finland. We analysed variation in total β-diversity and its replacement and richness difference components in relation to location of the river reach and its drainage basin (Baltic Sea in the south, the Barents Sea in the east and the north, and the Norwegian Sea in the west), in addition to climate and environmental variables. 3. In both macroinvertebrates and diatoms, the replacement and richness difference components showed wide variation. For macroinvertebrates, the richness difference component was the more important, whereas for diatoms, the replacement component was the more important in contributing to variation in β-diversity. There was no significant difference in β-diversity between the three main drainage basins, but species composition differed among the drainage basins. 4. Based on the richness difference component of β-diversity, climate variables were most strongly associated with community variation in macroinvertebrates. In diatoms, both environmental and climate variables were strongly correlated with community compositional variation. In both groups, there were also significant differences in α-diversity among the three main drainage basins, and several taxa were significant indicators of one of these drainage basins. Alpha diversity was greater in areas with a continental climate, while the oceanic areas in the west harboured greatly reduced flora and fauna. 5. The correlates of biodiversity were relatively similar in macroinvertebrates and diatoms. Climate variables, in particular temperature, were the most strongly associated with biodiversity patterns in the Arctic rivers of Fennoscandia. Sedimentary geology may be associated with increased productivity and, to a lesser extent, with sensitivity to acidification. There was considerable variation in community composition across Arctic Fennoscandia, indicating the necessity of protecting several stream reaches or even whole catchments within each region to conserve total riverine biodiversity. Furthermore, it is likely that the predicted changes in temperature in Arctic areas will influence riverine diversity patterns across Fennoscandia.
  • Pekkarinen, Antti (University of Helsinki, 1968)
  • Elina, Galina A.; Lukashov, Anatoly D.; Yurkovskaya, Tatyana K. (Finnish Environment Institute, 2010)
    The Finnish Environment 4/2010
    The monograph is a generalization based on the analysis and synthesis of the voluminous scope of data on the dynamics of palaeovegetation and its mapping, along with aspects of palaeogeography of the Kola Peninsula and Karelia. All the elements of past landscapes are considered against the background of the present state of environments: geology, geomorphology and vegetation. The interval under consideration embraces the Late Glacial Time (12 000-10 300 years BP) and the Holocene (from 10 300 years BP up to the present). The book discusses the methodical and theoretical treatments of the last decade. As a result, the dynamics of past landscapes are shown in the unity of all their components (i.e., relief, hydrology and vegetation), and in comparison with their present-day parameters. Cartographic and textual materials on geology and modern vegetation as well as palaeovegetation maps of model territories used in this book are entirely original. The model territories are rather evenly distributed throughout the Kola Peninsula and Karelia. Seven of them are represented in this work; for each of model territory, a series of maps (for 10 500, 9 500, 8 500, 5 500, 3 000, and 1 000 years BP) are provided, correlated with relief and present-day vegetation. The second stage of data generalization is a comparison of maps related to the same temporal sections. The sequence of the maps from ‘older’ to ‘younger’ characterizes the dynamics of chorological palaeovegetation units. These dynamics readily illustrate shifts of geographical zones in space and time.
  • Heino, Jani; Alahuhta, Janne; Fattorini, Simone (Wiley & Sons, 2019)
    Journal of Biogeography 2019; 46: 2548– 2557
    Aim Ecogeographical patterns have been widely studied in endothermic vertebrates, but relatively few studies have simultaneously examined patterns and causes of gradients in species richness, range size and body size in ectothermic insects. We examined patterns in species richness, mean range size and mean body size of ground beetle assemblages across the biogeographical provinces of Northern Europe, a region that was mostly covered by ice sheets during the latest Ice Age and that presents strong contemporary climatic gradients. Location Northern Europe. Methods We used literature information on the occurrence of ground beetles, and analysed patterns in species richness, mean range size and mean body size across the provinces using generalized linear models and boosted regression tree (BRT) analysis. Results We found a strongly decreasing gradient in species richness with increasing latitude, a strongly unimodal range size-latitude relationship, and a weak unimodal body size-latitude relationship in entire ground beetle assemblages. These gradients also varied among four major genera, suggesting that the overall patterns result from the nuances of smaller clades of ground beetles. The relative importance of contemporary environmental drivers also varied between species richness, mean range size and mean body size in BRT analysis. While species richness increased with mean annual temperature, mean range size showed an opposite relationship. Mean body size was most clearly associated with the precipitation of the driest month. Main Conclusions Our findings showed that the latitudinal species richness gradient was strong, and it was closely related to concomitant variation in temperature, whereas variations in mean range size and mean body size were more complex. These findings suggest that the causes for range size and body size variation in insects may be complex, requiring additional insights from studies conducted at local, regional and continental scales.
  • Golubyatnikov, L. L.; Mammarella, I. (2018)
    The experimental data on methane fluxes into the atmosphere from Fennoscandian lakes is analyzed. The contribution made by the lake network of this northern region to the atmospheric methane budget is estimated as 320 +/- 23 KtCH(4) per year. From 16 to 37% of the annual methane emission from Fennoscandian lakes is carried out by methane produced during the ice cover period. The methane fluxe rate from studied lakes is estimated as 2.6 +/- 0.2 gCH(4)m(-2) yr(-1). Among lakes of the region, small lakes (area
  • Kuglerová, Lenka; Hasselquist, Eliza Maher; Sponseller, Ryan Allen; Muotka, Timo; Hallsby, Goran; Laudon, Hjalmar (Elsevier, 2021)
    Science of The Total Environment 756 (2021), 143521
    In this paper we describe how forest management practices in Fennoscandian countries, namely Sweden and Finland, expose streams to multiple stressors over space and time. In this region, forestry includes several different management actions and we explore how these may successively disturb the same location over 60–100 year long rotation periods. Of these actions, final harvest and associated road construction, soil scarification, and/or ditch network maintenance are the most obvious sources of stressors to aquatic ecosystems. Yet, more subtle actions such as planting, thinning of competing saplings and trees, and removing logging residues also represent disturbances around waterways in these landscapes. We review literature about how these different forestry practices may introduce a combination of physicochemical stressors, including hydrological change, increased sediment transport, altered thermal and light regimes, and water quality deterioration. We further elaborate on how the single stressors may combine and interact and we consequently hypothesise how these interactions may affect aquatic communities and processes. Because production forestry is practiced on a large area in both countries, the various stressors appear multiple times during the rotation cycles and potentially affect the majority of the stream network length within most catchments. We concluded that forestry practices have traditionally not been the focus of multiple stressor studies and should be investigated further in both observational and experimental fashion. Stressors accumulate across time and space in forestry dominated landscapes, and may interact in unpredictable ways, limiting our current understanding of what forested stream networks are exposed to and how we can design and apply best management practices.
  • Kahlert, Maria; Bailet, Bonnie; Chonova, Teofana; Karjalainen, Satu Maaria; Schneider, Susanne C.; Tapolczai, Kálmán (Elsevier, 2021)
    Ecological Indicators 130 (2021), 108088
    We developed and compared the performance of freshwater benthic diatom indices calculated from (i) traditional morphological species identification, (ii) Amplicon Sequence Variants (ASVs) obtained via DNA metabarcoding, and (iii) morphological traits to indicate eutrophication in rivers and lakes in Fennoscandia. Based on the results, we provided recommendations for the future routine use of diatom bioassessment tools in environmental monitoring and assessment. Our results show that ASVs are the most promising candidates to be used in environmental assessment. Indices based on ASVs correlated better with TotP concentrations than morphological taxa data, whereas the trait indices correlated least. We could see by studying the taxonomic assignments of the ASVs that traditional morphotaxa were divided up into several ASVs with different ecological profiles, which explained part of the better index performance and also encourages further studies on diatom diversity and ecological preferences. In general, ASV- and morphotaxon-specific optima differed slightly between streams and lakes, but were significantly correlated with each other. This means that it should be possible to develop a common index that is applicable in both streams and lakes, but boundary values with respect to TotP might need to be set separately for them. More knowledge on diatom traits is required to enable their use for environmental assessment.
  • Väisänen, Rauno (University of Helsinki, 1980)