Browsing by Subject "GALAXY FORMATION"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • CORE Collaboration; De Zotti, G.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Väliviita, J. (2018)
    We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.
  • Ahoranta, Jussi; Nevalainen, Jukka; Wijers, Nastasha; Finoguenov, Alexis; Bonamente, Massilimiano; Tempel, Elmo; Tilton, Evan; Schaye, Joop; Kaastra, Jelle; Gozaliasl, Ghassem (2020)
    Aims. We explore the high spectral resolution X-ray data towards the quasar 3C 273 to search for signals of hot (similar to 10^(6-7) K) X-ray-absorbing gas co-located with two established intergalactic far-ultraviolet (FUV) OVI absorbers. Methods. We analyze the soft X-ray band grating data of all XMM-Newton and Chandra instruments to search for the hot phase absorption lines at the FUV predicted redshifts. The viability of potential line detections is examined by adopting the constraints of a physically justified absorption model. The WHIM hypothesis is investigated with a complementary 3D galaxy distribution analysis and by detailed comparison of the measurement results to the WHIM properties in the EAGLE cosmological, hydrodynamical simulation. Results. At one of the examined FUV redshifts, 0.09017 +/- 0.00003, we measured signals of two hot ion species, ;VIII and x202f;IX, with a 3.9 sigma combined significance level. While the absorption signal is only marginally detected in individual co-added spectra, considering the line features in all instruments collectively and assuming collisional equilibrium for absorbing gas, we were able to constrain the temperature (kT = 0.26 +/- 0.03 keV) and the column density cm(-2)) of the absorber. Thermal analysis indicates that FUV and X-ray absorption relate to different phases, with estimated temperatures, T-FUV & x2004;3 x 10(5), and, T(X - ray)x2004;3 x 10(6) K. These temperatures match the EAGLE predictions for WHIM at the FUV/X-ray measured N-ion-ranges. We detected a large scale galactic filament crossing the sight-line at the redshift of the absorption, linking the absorption to this structure. Conclusions. This study provides observational insights into co-existing warm and hot gas within a WHIM filament and estimates the ratio of the hot and warm phases. Because the hot phase is thermally distinct from the OVI gas, the estimated baryon content of the absorber is increased, conveying the promise of X-ray follow-up studies of FUV detected WHIM in refining the picture of the missing baryons.
  • Fattahi, Azadeh; Navarro, Julio F.; Sawala, Till; Frenk, Carlos S.; Oman, Kyle A.; Crain, Robert A.; Furlong, Michelle; Schaller, Matthieu; Schaye, Joop; Theuns, Tom; Jenkins, Adrian (2016)
    We use a large sample of isolated dark matter halo pairs drawn from cosmological N-body simulations to identify candidate systems whose kinematics match that of the Local Group (LG) of galaxies. We find, in agreement with the 'timing argument' and earlier work, that the separation and approach velocity of the Milky Way (MW) and Andromeda (M31) galaxies favour a total mass for the pair of similar to 5 x 10(12) M-circle dot. A mass this large, however, is difficult to reconcile with the small relative tangential velocity of the pair, as well as with the small deceleration from the Hubble flow observed for the most distant LG members. Halo pairs that match these three criteria have average masses a factor of similar to 2 times smaller than suggested by the timing argument, but with large dispersion. Guided by these results, we have selected 12 halo pairs with total mass in the range 1.6-3.6 x 10(12) M-circle dot for the APOSTLE project (A Project Of Simulating The Local Environment), a suite of hydrodynamical resimulations at various numerical resolution levels (reaching up to similar to 10(4) M-circle dot per gas particle) that use the subgrid physics developed for the EAGLE project. These simulations reproduce, by construction, the main kinematics of the MW-M31 pair, and produce satellite populations whose overall number, luminosities, and kinematics are in good agreement with observations of the MW and M31 companions. The APOSTLE candidate systems thus provide an excellent testbed to confront directly many of the predictions of the Lambda cold dark matter cosmology with observations of our local Universe.
  • Sales, Laura V.; Navarro, Julio F.; Oman, Kyle; Fattahi, Azadeh; Ferrero, Ismael; Abadi, Mario; Bower, Richard; Crain, Robert A.; Frenk, Carlos S.; Sawala, Till; Schaller, Matthieu; Schaye, Joop; Theuns, Tom; White, Simon D. M. (2017)
    The scaling of disc galaxy rotation velocity with baryonic mass (the 'baryonic Tully-Fisher' relation, BTF) has long confounded galaxy formation models. It is steeper than the M proportional to V-3 scaling relating halo virial masses and circular velocities and its zero-point implies that galaxies comprise a very small fraction of available baryons. Such low galaxy formation efficiencies may, in principle, be explained by winds driven by evolving stars, but the tightness of the BTF relation argues against the substantial scatter expected from such a vigorous feedback mechanism. We use the APOSTLE/EAGLE simulations to show that the BTF relation is well reproduced in Lambda cold dark matter (CDM) simulations that match the size and number of galaxies as a function of stellar mass. In such models, galaxy rotation velocities are proportional to halo virial velocity and the steep velocity-mass dependence results from the decline in galaxy formation efficiency with decreasing halo mass needed to reconcile the CDM halo mass function with the galaxy luminosity function. The scatter in the simulated BTF is smaller than observed, even when considering all simulated galaxies and not just rotationally supported ones. The simulations predict that the BTF should become increasingly steep at the faint end, although the velocity scatter at fixed mass should remain small. Observed galaxies with rotation speeds below similar to 40 km s(-1) seem to deviate from this prediction. We discuss observational biases and modelling uncertainties that may help to explain this disagreement in the context of Lambda CDM models of dwarf galaxy formation.
  • Benitez-Llambay, Alejandro; Navarro, Julio F.; Frenk, Carlos S.; Sawala, Till; Oman, Kyle; Fattahi, Azadeh; Schaller, Matthieu; Schaye, Joop; Crain, Robert A.; Theuns, Tom (2017)
    We examine the baryon content of low-mass A cold dark matter (ACDM) haloes (10(8) <M-200/M-circle dot <5 x 10(9)) using the APOSTLE cosmological hydrodynamical simulations. Most of these systems are free of stars and have a gaseous content set by the combined effects of cosmic reionization, which imposes a mass-dependent upper limit, and of ram-pressure stripping, which reduces it further in high-density regions. Haloes mainly affected by reionization (RELHICS; REionization-Limited H I Clouds) inhabit preferentially low-density regions and make up a population where the gas is in hydrostatic equilibrium with the dark matter potential and in thermal equilibrium with the ionizing UV background. Their thermodynamic properties are well specified, and their gas density and temperature profiles may be predicted in detail. Gas in RELHICs is nearly fully ionized but with neutral cores that span a large range of HI masses and column densities and have negligible non-thermal broadening. We present predictions for their characteristic sizes and central column densities; the massive tail of the distribution should be within reach of future blind HI surveys. Local Group RELHICs (LGRs) have some properties consistent with observed Ultra Compact High Velocity Clouds (UCHVCs) but the sheer number of the latter suggests that most UCHVCs are not RELHICS. Our results suggest that LGRs (i) should typically be beyond 500 kpc from the Milky Way or M31; (ii) have positive Galactocentric radial velocities; (iii) H I sizes not exceeding 1 kpc, and (iv) should be nearly round. The detection and characterization of RELHICS would offer a unique probe of the small-scale clustering of CDM.
  • Jackson, Thomas M.; Rosario, D. J.; Alexander, D. M.; Scholtz, J.; McAlpine, Stuart; Bower, R. G. (2020)
    In this paper, we present data from 72 low-redshift, hard X-ray selected active galactic nucleus (AGN) taken from the Swift-BAT 58 month catalogue. We utilize spectral energy distribution fitting to the optical to infrared photometry in order to estimate host galaxy properties. We compare this observational sample to a volume- and flux-matched sample of AGN from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) hydrodynamical simulations in order to verify how accurately the simulations can reproduce observed AGN host galaxy properties. After correcting for the known +0.2 dex offset in the SFRs between EAGLE and previous observations, we find agreement in the star formation rate (SFR) and X-ray luminosity distributions; however, we find that the stellar masses in EAGLE are 0.2-0.4 dex greater than the observational sample, which consequently leads to lower specific star formation rates (sSFRs). We compare these results to our previous study at high redshift, finding agreement in both the observations and simulations, whereby the widths of sSFR distributions are similar (similar to 0.4-0.6 dex) and the median of the SFR distributions lie below the star-forming main sequence by similar to 0.3-0.5 dex across all samples. We also use EAGLE to select a sample of AGN host galaxies at high and low redshift and follow their characteristic evolution from z = 8 to z = 0. We find similar behaviour between these two samples, whereby star formation is quenched when the black hole goes through its phase of most rapid growth. Utilizing EAGLE we find that 23 per cent of AGN selected at z similar to 0 are also AGN at high redshift, and that their host galaxies are among the most massive objects in the simulation. Overall, we find EAGLE reproduces the observations well, with some minor inconsistencies (similar to 0.2 dex in stellar masses and similar to 0.4 dex in sSFRs).