Browsing by Subject "GAUGE"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • The CMS collaboration; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Linden, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Sirunyan, A. M. (2019)
    A measurement of WZ electroweak (EW) vector boson scattering is presented. The measurement is performed in the leptonic decay modes WZ -> l nu l'l', where l, l' = e, mu. The analysis is based on a data sample of proton-proton collisions at root s = 13 TeV at the LHC collected with the CMS detector and corresponding to an integrated luminosity of 35.9 fb(-1) . The WZ plus two jet production cross section is measured in fiducial regions with enhanced contributions from EW production and found to be consistent with standard model predictions. The EW WZ production in association with two jets is measured with an observed (expected) significance of 2.2 (2.5) standard deviations. Constraints on charged Higgs boson production and on anomalous quartic gauge couplings in terms of dimension-eight effective field theory operators are also presented. (C) 2019 The Author(s). Published by Elsevier B.V.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2019)
    Measurements of the production of the standard model Higgs boson decaying to a W boson pair are reported. The W+ W- candidates are selected in events with an oppositely charged lepton pair, large missing transverse momentum, and various numbers of jets. To select Higgs bosons produced via vector boson fusion and associated production with a W or Z boson, events with two jets or three or four leptons are also selected. The event sample corresponds to an integrated luminosity of 35.9 fb(-1), collected in pp collisions at root s = 13 TeV by the CMS detector at the LHC during 2016. Combining all channels, the observed cross section times branching fraction is 1.28(-0.17)(+0.18) times the standard model prediction for the Higgs boson with a mass of 125.09 GeV. This is the first observation of the Higgs boson decay to W boson pairs by the CMS experiment. (c) 2019 The Author(s). Published by Elsevier B.V.
  • Bea, Yago; Jokela, Niko; Ponni, Arttu; Ramallo, Alfonso V. (2018)
    In this paper, we study noncommutative massive unquenched Chern-Simons matter theory using its gravity dual. We construct this novel background by applying a TsT-transformation on the known parent commutative solution. We discuss several aspects of this solution to the Type IIA supergravity equations of motion and, amongst others, check that it preserves Ar = 1 supersymmetry. We then turn our attention to applications and investigate how dynamical flavor degrees of freedom affect numerous observables of interest. Our framework can be regarded as a key step toward the construction of holographic quantum Hall states on a noncommutative plane.
  • The CMS collaboration; Sirunyan, A. M.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T. (2018)
    The observation of Higgs boson production in association with a top quark-antiquark pair is reported, based on a combined analysis of proton-proton collision data at center-of-mass energies of root s = 7, 8, and 13 TeV, corresponding to integrated luminosities of up to 5.1, 19.7, and 35.9 fb(-1), respectively. The data were collected with the CMS detector at the CERN LHC. The results of statistically independent searches for Higgs bosons produced in conjunction with a top quark-antiquark pair and decaying to pairs of W bosons, Z bosons, photons, tau leptons, or bottom quark jets are combined to maximize sensitivity. An excess of events is observed, with a significance of 5.2 standard deviations, over the expectation from the background-only hypothesis. The corresponding expected significance from the standard model for a Higgs boson mass of 125.09 GeV is 4.2 standard deviations. The combined best fit signal strength normalized to the standard model prediction is 1.26(-0.26)(+0.31).
  • The CMS collaboration; Sirunyan, A. M.; Tumasyan, A.; Eerola, P.; Forthomme, Laurent; Kirschenmann, H.; Österberg, K.; Voutilainen, M.; Bharthuar, Shudhashil; Brücken, Erik; Garcia, F.; Havukainen, J.; Heikkilä, Jaana; Kim, Minsuk; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Lotti, Mikko; Luukka, P.; Martikainen, Laura; Myllymäki, Mikael Erkki Johannes; Ott, Jennifer; Pekkanen, Juska; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Viinikainen, Jussi; Petrow, H.; Tuuva, T. (2021)
    A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, using proton-proton collisions at root s = 13 TeV at the LHC, is reported. The data sample corresponds to an integrated luminosity of 137 fb(-1) collected with the CMS detector. Events are selected by requiring two or three electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. No excess of events with respect to the standard model background predictions is observed. Model independent upper limits at 95% confidence level are reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass, from 200 to 3000 GeV. The results are interpreted in the context of the Georgi-Machacek model.
  • The CMS collaboration; Tumasyan, A.; Adam, W.; Eerola, P.; Forthomme, Laurent; Kirschenmann, H.; Österberg, K.; Voutilainen, M.; Bharthuar, Shudhashil; Brücken, Erik; Garcia, F.; Havukainen, J.; Heikkilä, Jaana; Kim, Minsuk; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Lotti, Mikko; Luukka, P.; Martikainen, Laura; Myllymäki, Mikael Erkki Johannes; Ott, Jennifer; Pekkanen, Juska; Rantanen, Milla-Maarit; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Viinikainen, Jussi; Petrow, H.; Tuuva, T. (2022)
  • Jimenez, Jose Beltran; Heisenberg, Lavinia; Koivisto, Tomi (2020)
    The geometrical formulation of gravity is not unique and can be set up in a variety of spacetimes. Even though the gravitational sector enjoys this freedom of different geometrical interpretations, consistent matter couplings have to be assured for a steady foundation of gravity. In generalised geometries, further ambiguities arise in the matter couplings unless the minimal coupling principle (MCP) is adopted that is compatible with the principles of relativity, universality and inertia. In this work, MCP is applied to all standard model gauge fields and matter fields in a completely general (linear) affine geometry. This is also discussed from an effective field theory perspective. It is found that the presence of torsion generically leads to theoretical problems. However, symmetric teleparallelism, wherein the affine geometry is integrable and torsion-free, is consistent with MCP. The generalised Bianchi identity is derived and shown to determine the dynamics of the connection in a unified fashion. Also, the parallel transport with respect to a teleparallel connection is shown to be free of second clock effects.