Browsing by Subject "GENE-THERAPY"

Sort by: Order: Results:

Now showing items 1-20 of 21
  • Cooper, Ann E.; Ahonen, Saija; Rowlan, Jessica S.; Duncan, Alison; Seppala, Eija H.; Vanhapelto, Paivi; Lohi, Hannes; Komaromy, Andras M. (2014)
  • Gousopoulos, Epameinondas; Proulx, Steven T.; Bachmann, Samia B.; Dieterich, Lothar C.; Scholl, Jeannette; Karaman, Sinem; Bianchi, Roberta; Detmar, Michael (2017)
    Secondary lymphedema is a common complication after cancer treatment, but the pathomechanisms underlying the disease remain unclear. Using a mouse tail lymphedema model, we found an increase in local and systemic levels of the lymphangiogenic factor vascular endothelial growth factor (VEGF)-C and identified CD68(+) macrophages as a cellular source. Surprisingly, overexpression of VEGF-C in a transgenic mouse model led to aggravation of lymphedema with increased immune cell infiltration and vascular leakage compared with wild-type littermates. Conversely, blockage of VEGF-C by overexpression of soluble VEGF receptor-3 reduced edema development, diminishing inflammation and blood vascular leakage. Similar findings were obtained in a hind limb lymph node excision lymphedema model. Flow cytometry analyses and immunofluorescence stainings in lymphedematic tissue showed that VEGF receptor-3 expression was restricted to lymphatic endothelial cells. Our data suggest that endogenous VEGF-C causes blood vascular leakage and fluid influx into the tissue, thus actively contributing to edema formation. These data may provide the basis for future clinical therapeutic approaches.
  • Autio, Karoliina P. M.; Ruotsalainen, Janne J.; Anttila, Marjukka O.; Niittykoski, Minna; Waris, Matti; Hemminki, Akseli; Vähä-Koskela, Markus J. V.; Hinkkanen, Ari E. (2015)
    Background: Dogs suffer from spontaneous tumors which may be amenable to therapies developed for human cancer patients, and dogs may serve as large-animal cancer models. A non-pathogenic Semliki Forest virus vector VA7-EGFP previously showed promise in targeting human tumor xenografts in mice, but the oncolytic capacity of the virus in canine cancer cells and the safety of the virus in higher mammals such as dogs, are not known. We therefore assessed the oncolytic potency of VA7-EGFP against canine cancer cells by infectivity and viability assays in two dog solid tumor cell lines. Furthermore we performed a 3-week safety study in two adult Beagles which received a single intravenous injection of similar to 2 x 10(5) plaque forming units of parental A7(74) strain. Results: VA7-EGFP was able to replicate in and kill both canine cancer cell lines tested. No adverse events were observed in either of the two virus-injected adult Beagles and no infective virus could be recovered from any of the biological samples collected over the course of the study. Neutralizing antibodies to Semliki Forest virus became detectable in the dogs at 5 days post infection and remained elevated until study termination. Conclusions: Based on these results, testing of the oncolytic potential of attenuated Semliki Forest virus in canine cancer patients appears feasible.
  • Talman, Virpi; Kivelä, Milla Riikka (2018)
    The heart is a complex organ consisting of various cell types, each of which plays an important role in both physiological and pathophysiological conditions. The cells communicate with each other through direct cell-cell interactions and paracrine signaling, and both homotypic and heterotypic cell interactions contribute to the organized structure and proper function of the heart. Cardiomyocytes (CMs) and endothelial cells (ECs) are two of the most abundant cardiac cell types and they also play central roles in both cardiac remodeling and regeneration. The postnatal cell cycle withdrawal of CMs, which takes place within days or weeks after birth, represents the major barrier for regeneration in adult mammalian hearts, as adult CMs exhibit a very low proliferative capacity. Recent evidence highlights the importance of ECs not only as the most abundant cell type in the heart but also as key players in post-infarction remodeling and regeneration. In this MiniReview, we focus on blood vascular ECs and CMs and their roles and interactions in cardiac physiology and pathologies, with a special emphasis on cardiac regeneration. We summarize the known mediators of the bidirectional CM-EC interactions and discuss the related recent advances in the development of therapies aiming to promote heart repair and regeneration targeting these two cell types.
  • Cavalli, Emma; Levinson, Clara; Hertl, Matthias; Broguiere, Nicolas; Brück, Oscar; Mustjoki, Satu; Gerstenberg, Anja; Weber, Daniel; Salzmann, Gian; Steinwachs, Matthias; Barreto, Goncalo; Zenobi-Wong, Marcy (2019)
    Treating cartilage injuries and degenerations represents an open surgical challenge. The recent advances in cell therapies have raised the need for a potent off-the-shelf cell source. Intra-articular injections of TGF-beta transduced polydactyly chondrocytes have been proposed as a chronic osteoarthritis treatment but despite promising results, the use of gene therapy still raises safety concerns. In this study, we characterized infant, polydactyly chondrocytes during in vitro expansion and chondrogenic redifferentiation. Polydactyly chondrocytes have a steady proliferative rate and re-differentiate in 3D pellet culture after up to five passages. Additionally, we demonstrated that polydactyly chondrocytes produce cartilage-like matrix in a hyaluronan-based hydrogel, namely transglutaminase cross-linked hyaluronic acid (HA-TG). We utilized the versatility of TG cross-linking to augment the hydrogels with heparin moieties. The heparin chains allowed us to load the scaffolds with TGF-beta 1 which induced cartilage-like matrix deposition both in vitro and in vivo in a subcutaneous mouse model. This strategy introduces the possibility to use infant, polydactyly chondrocytes for the clinical treatment of joint diseases.
  • Buechner, Jochen; Caruana, Ignazio; Kuenkele, Annette; Rives, Susana; Vettenranta, Kim; Bader, Peter; Peters, Christina; Baruchel, Andre; Calkoen, Friso G. (2022)
    Chimeric antigen receptor T-cell therapy (CAR-T) targeting CD19 has been associated with remarkable responses in paediatric patients and adolescents and young adults (AYA) with relapsed/refractory (R/R) B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). Tisagenlecleucel, the first approved CD19 CAR-T, has become a viable treatment option for paediatric patients and AYAs with BCP-ALL relapsing repeatedly or after haematopoietic stem cell transplantation (HSCT). Based on the chimeric antigen receptor molecular design and the presence of a 4-1BB costimulatory domain, tisagenlecleucel can persist for a long time and thereby provide sustained leukaemia control. "Real-world" experience with tisagenlecleucel confirms the safety and efficacy profile observed in the pivotal registration trial. Recent guidelines for the recognition, management and prevention of the two most common adverse events related to CAR-T - cytokine release syndrome and immune-cell-associated neurotoxicity syndrome - have helped to further decrease treatment toxicity. Consequently, the questions of how and for whom CD19 CAR-T could substitute HSCT in BCP-ALL are inevitable. Currently, 40-50% of R/R BCP-ALL patients relapse post CD19 CAR-T with either CD19(-) or CD19(+) disease, and consolidative HSCT has been proposed to avoid disease recurrence. Contrarily, CD19 CAR-T is currently being investigated in the upfront treatment of high-risk BCP-ALL with an aim to avoid allogeneic HSCT and associated treatment-related morbidity, mortality and late effects. To improve survival and decrease long-term side effects in children with BCP-ALL, it is important to define parameters predicting the success or failure of CAR-T, allowing the careful selection of candidates in need of HSCT consolidation. In this review, we describe the current clinical evidence on CAR-T in BCP-ALL and discuss factors associated with response to or failure of this therapy: product specifications, patient- and disease-related factors and the impact of additional therapies given before (e.g., blinatumomab and inotuzumab ozogamicin) or after infusion (e.g., CAR-T re-infusion and/or checkpoint inhibition). We discuss where to position CAR-T in the treatment of BCP-ALL and present considerations for the design of supportive trials for the different phases of disease. Finally, we elaborate on clinical settings in which CAR-T might indeed replace HSCT.
  • Huotarinen, Antti; Penttinen, Anna-Maija; Bäck, Susanne; Voutilainen, Merja H.; Julku, Ulrika; Piepponen, T. Petteri; Männistö, Pekka T.; Saarma, Mart; Tuominen, Raimo; Laakso, Aki; Airavaara, Mikko (2018)
    Several neurotrophic factors ( NTF) are shown to be neuroprotective and neurorestorative in pre-clinical animal models for Parkinson's disease ( PD), particularly in models where striatal dopamine neuron innervation partially exists. The results of clinical trials on late-stage patients have been modest. Subthalamic deep brain stimulation ( STN DBS) is a proven treatment for a selected group of advanced PD patients. The cerebral dopamine neurotrophic factor ( CDNF) is a promising therapeutic protein, but its effects in animal models of late-stage PD have remained under-researched. The interactions of NTF and STN DBS treatments have not been studied before. We found that a nigral CDNF protein alone had only a marginal effect on the behavioral deficits in a late-stage hemiparkinsonian rat model ( 6-OHDA MFB). However, CDNF improved the effect of acute STN DBS on front limb use asymmetry at 2 and 3 weeks after CDNF injection. STN lesion-modeling chronic stimulation-had an additive effect in reducing front limb use in the cylinder test and apomorphine-induced rotation. The combination of CDNF and acute STN DBS had a favorable effect on striatal tyrosine hydroxylase. This study presents a novel additive beneficial effect of NTF and STN DBS, which might be explained by the interaction of DBS-induced endogenous NTFs and exogenously injected CDNF. SNpc can be reached via similar trajectories used in clinical STN DBS, and this interaction is an important area for future studies. (C) 2018 The Authors. Published by Elsevier Ltd on behalf of IBRO. This is an open access article under the CC BY-NC-ND license (
  • Badazhkova, Veronika D.; Raik, Sergei; Polyakov, Dmitry S.; Poshina, Daria N.; Skorik, Yury A. (2020)
    Recently, much effort has been expended on the development of non-viral gene delivery systems based on polyplexes of nucleic acids with various cationic polymers. Natural polysaccharide derivatives are promising carriers due to their low toxicity. In this work, chitosan was chemically modified by a reaction with 4-formyl-n,n,n-trimethylanilinium iodide and pyridoxal hydrochloride and subsequent reduction of the imine bond with NaBH4. This reaction yielded three novel derivatives, n-[4-(n',n',n'-trimethylammonium)benzyl]chitosan chloride (TMAB-CS), n-[(3-hydroxy-5-(hydroxymethyl)-2-methyl-4-pyridine)methyl]chitosan chloride (Pyr-CS), and n-[4-(n',n',n''-trimethylammonium)benzyl]-n-[(3-hydroxy-5-(hydroxymethyl)-2-methyl-4-pyridine)methyl]chitosan chloride (PyrTMAB-CS). Their structures and degrees of substitution were established by H-1 NMR spectroscopy as DS1 = 0.22 for TMAB-CS, DS2 = 0.28 for Pyr-CS, and DS1 = 0.21, DS2 = 0.22 for PyrTMAB-CS. Dynamic light scattering measurements revealed that the new polymers formed stable polyplexes with plasmid DNA encoding the green fluorescent protein (pEGFP-N3) and that the particles had the smallest size (110-165 nm) when the polymer:DNA mass ratio was higher than 5:1. Transfection experiments carried out in the HEK293 cell line using the polymer:DNA polyplexes demonstrated that Pyr-CS was a rather poor transfection agent at polymer:DNA mass ratios less than 10:1, but it was still more effective than the TMAB-CS and PyrTMAB-CS derivatives that contained a quaternary ammonium group. By contrast, TMAB-CS and PyrTMAB-CS were substantially more effective than Pyr-CS at higher polymer:DNA mass ratios and showed a maximum efficiency at 200:1 (50%-70% transfected cells). Overall, the results show the possibility of combining substituent effects in a single carrier, thereby increasing its efficacy.
  • Voutilainen, Merja H.; De Lorenzo, Francesca; Stepanova, Polina; Bäck, Susanne; Pulkkila, Päivi; Pörsti, Eeva; Saarma, Mart; Männistö, Pekka T.; Tuominen, Raimo K. (2017)
    Parkinson's disease (PD) is a neurodegenerative disorder associated with a progressive loss of dopaminergic (DAergic) neurons of the substantia nigra (SN) and the accumulation of intracellular inclusions containing alpha-synuclein. Current therapies do not stop the progression of the disease, and the efficacy of these treatments wanes over time. Neurotrophic factors (NTFs) are naturally occurring proteins promoting the survival and differentiation of neurons and the maintenance of neuronal contacts. CDNF (cerebral dopamine NTF) and GDNF (glial cell line-derived NTF) are able to protect DAergic neurons against toxin-induced degeneration in experimental models of PD. Here, we report an additive neurorestorative effect of coadministration of CDNF and GDNF in the unilateral 6-hydroxydopamine (6-OHDA) lesion model of PD in rats. NTFs were given into the striatum four weeks after unilateral intrastriatal injection of 6-OHDA (20 mu g). Amphetamine-induced (2.5 mg/kg, i.p.) rotational behavior was measured every two weeks. Number of tyrosine hydroxylase (TH)-positive cells from SN pars compacta (SNpc) and density of TH-positive fibers in the striatum were analyzed at 12 weeks after lesion. CDNF and GDNF alone restored the DAergic function, and one specific dose combination had an additive effect: CDNF (2.5 mu g) and GDNF (1 mu g) coadministration led to a stronger trophic effect relative to either of the single treatments alone. The additive effect may indicate different mechanism of action for the NTFs. Indeed, both NTFs activated the survival promoting PI3 kinase (PI3K)-Akt signaling pathway, but only CDNF decreased the expression level of tested endoplasmatic reticulum (ER) stress markers ATF6, glucose-regulated protein 78 (GRP78), and phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2 alpha).
  • Niittykoski, Minna; zu Fraunberg, Mikael von und; Martikainen, Miika; Rauramaa, Tuomas; Immonen, Arto; Koponen, Susanna; Leinonen, Ville; Vaha-Koskela, Markus; Zhang, Qiwei; Kuhnel, Florian; Mei, Ya-Fang; Yla-Herttuala, Seppo; Jaaskelainen, Juha E.; Hinkkanen, Ari (2017)
    BACKGROUND: Oncolytic adenoviruses show promise in targeting gliomas because they do not replicate in normal brain cells. However, clinical responses occur only in a subset of patients. One explanation could be the heterogenic expression level of virus receptors. Another contributing factor could be variable activity of tumor antiviral defenses in different glioma subtypes. METHODS: We established a collection of primary low-passage cell lines from different glioma subtypes (3 glioblastomas, 3 oligoastrocytomas, and 2 oligodendrogliomas) and assessed them for receptor expression and sensitivity to human adenovirus (HAd) serotypes 3, 5, and 11p. To gauge the impact of antiviral defenses, we also compared the infectivity of the oncolytic adenoviruses in interferon (IFN)-pretreated cells with IFN-sensitive Semliki Forest virus (SFV). RESULTS: Immunostaining revealed generally low expression of HAd5 receptor CAR in both primary tumors and derived cell lines. HAd11p receptor CD46 levels were maintained at moderate levels in both primary tumor samples and derived cell lines. HAd3 receptor DSG-2 was reduced in the cell lines compared to the tumors. Yet, at equal multiplicities of infection, the oncolytic potency of HAd5 in vitro in tumor-derived cells was comparable to HAd11p, whereas HAd3 lysed fewer cells than either of the other two HAd serotypes in 72 hours. IFN blocked replication of SFV, while HAds were rather unaffected. CONCLUSIONS: Adenovirus receptor levels on glioma-derived cell lines did not correlate with infection efficacy and may not be a relevant indicator of clinical oncolytic potency. Adenovirus receptor analysis should be preferentially performed on biopsies obtained perioperatively.
  • Leopold, Anna; Verkhusha, Vladislav V. (2020)
    Inhibition of receptor tyrosine kinases (RTKs) by small molecule inhibitors and monoclonal antibodies is used to treat cancer. Conversely, activation of RTKs with their ligands, including growth factors and insulin, is used to treat diabetes and neurodegeneration. However, conventional therapies that rely on injection of RTK inhibitors or activators do not provide spatiotemporal control over RTK signaling, which results in diminished efficiency and side effects. Recently, a number of optogenetic and optochemical approaches have been developed that allow RTK inhibition or activation in cells andin vivowith light. Light irradiation can control RTK signaling non-invasively, in a dosed manner, with high spatio-temporal precision, and without the side effects of conventional treatments. Here we provide an update on the current state of the art of optogenetic and optochemical RTK technologies and the prospects of their use in translational studies and therapy.
  • Hartiala, Pauliina; Saarikko, Anne M. (2016)
    Lymphedema is a progressive disease caused by damage to the lymphatic network. Recent development in the fields of preclinical growth factor research and lymphedema microsurgery promise new hope for lymphedema patients. In this article, we review the latest results on basic research and highlight the role of specific growth factors in normal lymphatic development and several disease states. Lymph node transfer, a new promising method in reconstructive lymphatic microsurgery, is also dependent on the lymphatic vascular regrowth and lymphangiogenic growth factors. We discuss the scientific basis of lymph node transfer and therapeutic potential of lymphangiogenic growth factors in the treatment of lymphedema.
  • Quitt, Pia R.; Hytönen, Marjo K.; Matiasek, Kaspar; Rosati, Marco; Fischer, Andrea; Lohi, Hannes (2018)
    An eight week old Labrador Retriever puppy presented with stiff-legged robotic gait. Abnormal gait was most evident after rest and improved with prolonged activity. On occasions, initiation of sudden movements would result in collapse with rigidity of the trunk and stiff extended limbs for several seconds. Other clinical signs were excitement-induced upper airway stridor and oropharyngeal dysphagia. Myotonia congenita was diagnosed based on clinical signs, abundant myotonic discharges on electromyography and exclusion of structural myopathies on histology. Whole exome sequencing revealed a case-specific homozygous variant in CLCN1, c.2275A > T resulting in a premature stop codon, p.R759X. The CLCN1 variant was absent from the genomes of 127 Labrador Retriever controls and 474 control dogs from other breeds. This study expands the spectrum of identified canine CLCN1 mutations and the list of affected breeds in myotonia congenita and highlights the potential value of dogs as translational large animal models of human genetic diseases. (C) 2018 The Authors. Published by Elsevier B.V.
  • Renko, Juho-Matti; Mahato, Arun Kumar; Visnapuu, Tanel; Valkonen, Konsta; Karelson, Mati; Voutilainen, Merja H.; Saarma, Mart; Tuominen, Raimo K.; Sidorova, Yulia A. (2021)
    Background: Parkinson's disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. Objective: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF's receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. Methods: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. Results: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons fromMPP+-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and seemed to protect dopaminergic fibers in the striatum. Conclusion: BT44 holds potential for further development into a novel, possibly disease-modifying, therapy for PD.
  • Bondarenko, Olesja; Saarma, Mart (2021)
    Neurotrophic factors (NTFs) are small secreted proteins that support the development, maturation and survival of neurons. NTFs injected into the brain rescue and regenerate certain neuronal populations lost in neurodegenerative diseases, demonstrating the potential of NTFs to cure the diseases rather than simply alleviating the symptoms. NTFs (as the vast majority of molecules) do not pass through the blood-brain barrier (BBB) and therefore, are delivered directly into the brain of patients using costly and risky intracranial surgery. The delivery efficacy and poor diffusion of some NTFs inside the brain are considered the major problems behind their modest effects in clinical trials. Thus, there is a great need for NTFs to be delivered systemically thereby avoiding intracranial surgery. Nanoparticles (NPs), particles with the size dimensions of 1-100 nm, can be used to stabilize NTFs and facilitate their transport through the BBB. Several studies have shown that NTFs can be loaded into or attached onto NPs, administered systemically and transported to the brain. To improve the NP-mediated NTF delivery through the BBB, the surface of NPs can be functionalized with specific ligands such as transferrin, insulin, lactoferrin, apolipoproteins, antibodies or short peptides that will be recognized and internalized by the respective receptors on brain endothelial cells. In this review, we elaborate on the most suitable NTF delivery methods and envision "ideal" NTF for Parkinson's disease (PD) and clinical trial thereof. We shortly summarize clinical trials of four NTFs, glial cell line-derived neurotrophic factor (GDNF), neurturin (NRTN), platelet-derived growth factor (PDGF-BB), and cerebral dopamine neurotrophic factor (CDNF), that were tested in PD patients, focusing mainly on GDNF and CDNF. We summarize current possibilities of NP-mediated delivery of NTFs to the brain and discuss whether NPs have impact in improving the properties of NTFs and delivery across the BBB. Emerging delivery approaches and future directions of NTF-based nanomedicine are also discussed.
  • Niskanen, Julia; Dillard, Kati; Arumilli, Meharji; Salmela, Elina; Anttila, Marjukka; Lohi, Hannes; Hytonen, Marjo K. (2017)
    A rare hereditary mechanobullous disorder called epidermolysis bullosa (EB) causes blistering in the skin and the mucosal membranes. To date, nineteen EB-related genes have been discovered in human and other species. We describe here a novel EB variant in dogs. Two newborn littermates of Central Asian Shepherd dogs with severe signs of skin blistering were brought to a veterinary clinic and euthanized due to poor prognosis. In post-mortem examination, the puppies were shown to have findings in the skin and the mucosal membranes characteristic of EB. A whole-genome sequencing of one of the affected puppies was performed to identify the genetic cause. The resequencing data were filtered under a recessive model against variants from 31 other dog genomes, revealing a homozygous case-specific nonsense variant in one of the known EB-causing genes, COL7A1 (c.4579C> T, p.R1527*). The variant results in a premature stop codon and likely absence of the functional protein in the basement membrane of the skin in the affected dogs. This was confirmed by immunohistochemistry using a COL7A1 antibody. Additional screening of the variant indicated full penetrance and breed specificity at similar to 28% carrier frequency. In summary, this study reveals a novel COL7A1 variant causing recessive dystrophic EB and provides a genetic test for the eradication of the disease from the breed.
  • Kuryk, Lukasz; Moller, Anne-Sophie W.; Vuolanto, Antti; Pesonen, Sari; Garofalo, Mariangela; Cerullo, Vincenzo; Jaderberg, Magnus (2019)
    Oncolytic adenoviruses can trigger lysis of tumor cells, induce an antitumor immune response, bypass classical chemotherapeutic resistance strategies of tumors, and provide opportunities for combination strategies. A major challenge is the development of scalable production methods for viral seed stocks and sufficient quantities of clinical grade viruses. Because of promising clinical signals in a compassionate use program (Advanced Therapy Access Program) which supported further development, we chose the oncolytic adenovirus ONCOS-401 as a testbed for a new approach to scale up. We found that the best viral production conditions in both T-175 flasks and HYPERFlasks included A549 cells grown to 220,000 cells/cm(2) (80% confluency), with ONCOS-401 infection at 30 multiplicity of infection (MOI), and an incubation period of 66 h. The Lysis A harvesting method with benzonase provided the highest viral yield from both T-175 and HYPERFlasks (10,887 +/- 100 and 14,559 +/- 802 infectious viral particles/cell, respectively). T-175 flasks and HYPERFlasks produced up to 2.1 x 10(9) +/- 0.2 and 1.75 x 10(9) +/- 0.08 infectious particles of ONCOS-401 per cm(2) of surface area, respectively. Our findings suggest a suitable stepwise process that can be applied to optimizing the initial production of other oncolytic viruses.
  • Paavo, Maarjaliis; Carvalho, Jose R. L.; Lee, Winston; Sengillo, Jesse D.; Tsang, Stephen H.; Sparrow, Janet R. (2019)
    PURPOSE. To ascertain cellular constituents within islands of preserved retina in choroideremia (CHM) by multimodal imaging. METHODS. CHM probands (16) and female carriers (9) of CHM were studied. Near-infrared autofluorescence (NIR-AF; 787-nm excitation; emission, > 830 nm), short-wavelength autofluorescence (SW-AF; 488-nm excitation, 500-to 680-nm emission), and spectral-domain optical coherence tomography (SD-OCT) images were acquired with a confocal scanning laser ophthalmoscope. SW-AF intensities were measured by quantitative fundus autofluorescence (qAF), and NIR-AF intensity profiles were analyzed. Retinal thicknesses and visual acuity were measured. RESULTS. In 19 of 31 eyes of affected males, islands of preserved NIR-AF signal were also visible as fluorescence signal in SW-AF images. Notable in 12 eyes were areas of speckled SW-AF that was hypoautofluorescent in the NIR-AF image. Islands of preserved NIR-AF and SW-AF signal were often associated with the presence of visible but thinned outer nuclear layer and discontinuous interdigitation zone, ellipsoid zone, and external limiting membrane. NIR-AF profiles revealed that even in areas of preserved retina, the NIR-AF signal from retinal pigment epithelium (RPE) melanin is greatly reduced. qAF was reduced overall. The fundus of carriers was characterized by a mosaicism in which patches of reduced NIR-AF colocalized with reduced SW-AF. CONCLUSIONS. In CHM-affected males, the presence of RPE was indicated by an NIR-AF signal and the absence of hypertransmission of OCT signal into the choroid. RPE preservation was associated with better visual acuity. In carriers, patches of reduced SW-AF colocalized with decreased NIR-AF and qAF was severely reduced.
  • Rajecki, Maria; Sarparanta, Mirkka; Hakkarainen, Tanja; Tenhunen, Mikko; Diaconu, Iulia; Kuhmonen, Venla; Kairemo, Kalevi; Kanerva, Anna-Maija; Airaksinen, Anu J.; Hemminki, Akseli (2012)
  • Lähteenvuo, Johanna; Hätinen, Olli-Pekka; Kuivanen, Antti; Huusko, Jenni; Paananen, Jussi; Lähteenvuo, Markku; Nurro, Jussi; Hedman, Marja; Hartikainen, Juha; Laham-Karam, Nihay; Mäkinen, Petri; Räsänen, Markus; Alitalo, Kari; Rosenzweig, Anthony; Ylä-Herttuala, Seppo (2020)
    VEGF-B gene therapy is a promising proangiogenic treatment for ischemic heart disease, but unexpectedly, we found that high doses of VEGF-B promote ventricular arrhythmias (VA).VEGF-B knockout, αMHC-VEGF-B transgenic mice, and pigs transduced intramyocardially with adenoviral (Ad)VEGF- B186 were studied.Immunostaining showed a 2-fold increase in the number of nerves (76 vs.39 in controls, nerves/field,p