Browsing by Subject "GENOME-WIDE ANALYSIS"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Holman, Luke; Helantera, Heikki; Trontti, Kalevi; Mikheyev, Alexander S. (2019)
    Queen pheromones are chemical signals that mediate reproductive division of labor in eusocial animals. Remarkably, queen pheromones are composed of identical or chemically similar compounds in some ants, wasps and bees, even though these taxa diverged > 150MYA and evolved queens and workers independently. Here, we measure the transcriptomic consequences of experimental exposure to queen pheromones in workers from two ant and two bee species (genera: Lasius, Apis, Bombus), and test whether they are similar across species. Queen pheromone exposure affected transcription and splicing at many loci. Many genes responded consistently in multiple species, and the set of pheromone-sensitive genes was enriched for functions relating to lipid biosynthesis and transport, olfaction, production of cuticle, oogenesis, and histone (de)acetylation. Pheromone-sensitive genes tend to be evolutionarily ancient, positively selected, peripheral in the gene coexpression network, hypomethylated, and caste-specific in their expression. Our results reveal how queen pheromones achieve their effects, and suggest that ants and bees use similar genetic modules to achieve reproductive division of labor.
  • Sablok, Gaurav; Powell, Jonathan J.; Kazan, Kemal (2017)
    Plants use a wide range of mechanisms to adapt to different environmental stresses. One of the earliest responses displayed under stress is rapid alterations in stress responsive gene expression that has been extensively analyzed through expression profiling such as microarrays and RNA-sequencing. Recently, expression profiling has been complemented with proteome analyses to establish a link between transcriptional and the corresponding translational changes. However, proteome profiling approaches have their own technical limitations. More recently, ribosome-associated mRNA profiling has emerged as an alternative and a robust way of identifying translating mRNAs, which are a set of mRNAs associated with ribosomes and more likely to contribute to proteome abundance. In this article, we briefly review recent studies that examined the processes affecting the abundance of translating mRNAs, their regulation during plant development and tolerance to stress conditions and plant factors affecting the selection of translating mRNA pools. This review also highlights recent findings revealing differential roles of alternatively spliced mRNAs and their translational control during stress adaptation. Overall, better understanding of processes involved in the regulation of translating mRNAs has obvious implications for improvement of stress tolerance in plants.
  • Lauri, Sari E.; Ryazantseva, Maria; Orav, Ester; Vesikansa, Aino; Taira, Tomi (2021)
    Kainate receptors (KARs) are highly expressed in the immature brain and have unique developmentally regulated functions that may be important in linking neuronal activity to morphogenesis during activitydependent fine-tuning of the synaptic connectivity. Altered expression of KARs in the developing neural network leads to changes in glutamatergic connectivity and network excitability, which may lead to longlasting changes in behaviorally relevant circuitries in the brain. Here, we summarize the current knowledge on physiological and morphogenic functions described for different types of KARs at immature neural circuitries, focusing on their roles in modulating synaptic transmission and plasticity as well as circuit maturation in the rodent hippocampus and amygdala. Finally, we discuss the emerging evidence suggesting that malfunction of KARs in the immature brain may contribute to the pathophysiology underlying developmentally originating neurological disorders.
  • Taube, Ran; Peterlin, Boris Matija (2013)
  • Muterko, Alexandr; Kalendar, Ruslan; Salina, Elena (2016)
    In wheat, the vernalization requirement is mainly controlled by the VRN genes. Different species of hexaploid and tetraploid wheat are widely used as genetic source for new mutant variants and alleles for fundamental investigations and practical breeding programs. In this study, VRN-A1 and VRN-B1 were analysed for 178 accessions representing six tetraploid wheat species (Triticum dicoccoides, T. dicoccum, T. turgidum, T. polonicum, T. carthlicum, T. durum) and five hexaploid species (T. compactum, T. sphaerococcum, T. spelta, T. macha, T. vavilovii).
  • Rajamaki, Minna-Liisa; Sikorskaite-Gudziuniene, Sidona; Sarmah, Nandita; Varjosalo, Markku; Valkonen, Jari P. T. (2020)
    BackgroundInfection of plants by viruses interferes with expression and subcellular localization of plant proteins. Potyviruses comprise the largest and most economically damaging group of plant-infecting RNA viruses. In virus-infected cells, at least two potyviral proteins localize to nucleus but reasons remain partly unknown.ResultsIn this study, we examined changes in the nuclear proteome of leaf cells from a diploid potato line (Solanum tuberosum L.) after infection with potato virus A (PVA; genus Potyvirus; Potyviridae) and compared the data with that acquired for healthy leaves. Gel-free liquid chromatography-coupled to tandem mass spectrometry was used to identify 807 nuclear proteins in the potato line v2-108; of these proteins, 370 were detected in at least two samples of healthy leaves. A total of 313 proteins were common in at least two samples of healthy and PVA-infected leaves; of these proteins, 8 showed differential accumulation. Sixteen proteins were detected exclusively in the samples from PVA-infected leaves, whereas other 16 proteins were unique to healthy leaves. The protein Dnajc14 was only detected in healthy leaves, whereas different ribosomal proteins, ribosome-biogenesis proteins, and RNA splicing-related proteins were over-represented in the nuclei of PVA-infected leaves. Two virus-encoded proteins were identified in the samples of PVA-infected leaves.ConclusionsOur results show that PVA infection alters especially ribosomes and splicing-related proteins in the nucleus of potato leaves. The data increase our understanding of potyvirus infection and the role of nucleus in infection. To our knowledge, this is the first study of the nuclear proteome of potato leaves and one of the few studies of changes occurring in nuclear proteomes in response to plant virus infection.