Browsing by Subject "GEOMAGNETIC STORMS"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Pulkkinen, T. I.; Dimmock, A. P.; Lakka, A.; Osmane, A.; Kilpua, E.; Myllys, M.; Tanskanen, E. I.; Viljanen, A. (2016)
    We examine the role of the magnetosheath in solar wind-magnetosphere-ionosphere coupling using the Time History of Events and Macroscale Interactions during Substorms plasma and magnetic field observations in the magnetosheath together with OMNI solar wind data and auroral electrojet recordings from the International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer chain. We demonstrate that the electric field and Poynting flux reaching the magnetopause are not linear functions of the electric field and Poynting flux observed in the solar wind: the electric field and Poynting flux at the magnetopause during higher driving conditions are lower than those predicted from a linear function. We also show that the Poynting flux normal to the magnetopause is linearly correlated with the directly driven part of the auroral electrojets in the ionosphere. This indicates that the energy entering the magnetosphere in the form of the Poynting flux is directly responsible for driving the electrojets. Furthermore, we argue that the polar cap potential saturation discussed in the literature is associated with the way solar wind plasma gets processed during the bow shock crossing and motion within the magnetosheath.
  • Kalliokoski, Milla M. H.; Kilpua, Emilia K. J.; Osmane, Adnane; Turner, Drew L.; Jaynes, Allison N.; Turc, Lucile; George, Harriet; Palmroth, Minna (2020)
    The energetic electron content in the Van Allen radiation belts surrounding the Earth can vary dramatically at several timescales, and these strong electron fluxes present a hazard for spacecraft traversing the belts. The belt response to solar wind driving is, however, largely unpredictable, and the direct response to specific large-scale heliospheric structures has not been considered previously. We investigate the immediate response of electron fluxes in the outer belt that are driven by sheath regions preceding interplanetary coronal mass ejections and the associated wave activity in the inner magnetosphere. We consider the events recorded from 2012 to 2018 in the Van Allen Probes era to utilise the energy- and radial-distance-resolved electron flux observations of the twin spacecraft mission. We perform a statistical study of the events by using the superposed epoch analysis in which the sheaths are superposed separately from the ejecta and resampled to the same average duration. Our results show that the wave power of ultra-low frequency Pc5 and electromagnetic ion cyclotron waves, as measured by a Geostationary Operational Environmental Satellite (GOES), is higher during the sheath than during the ejecta. However, the level of chorus wave power, as measured by the Van Allen Probes, remains approximately the same due to similar substorm activity during the sheath and ejecta. Electron flux enhancements are common at low energies (<1 MeV) throughout the outer belt (L = 3-6), whereas depletion predominantly occurs at high energies for high radial distances (L > 4). It is distinctive that the depletion extends to lower energies at larger distances. We suggest that this L-shell and energy-dependent depletion results from the magnetopause shadowing that dominates the losses at large distances, while the wave-particle interactions dominate closer to the Earth. We also show that non-geoeffective sheaths cause significant changes in the outer belt electron fluxes.
  • George, Harriet; Kilpua, Emilia; Osmane, Adnane; Asikainen, Timo; Kalliokoski, Milla M. H.; Rodger, Craig J.; Dubyagin, Stepan; Palmroth, Minna (2020)
    Recently, it has been established that interplanetary coronal mass ejections (ICMEs) can dramatically affect both trapped electron fluxes in the outer radiation belt and precipitating electron fluxes lost from the belt into the atmosphere. Precipitating electron fluxes and energies can vary over a range of timescales during these events. These variations depend on the initial energy and location of the electron population and the ICME characteristics and structures. One important factor controlling electron dynamics is the magnetic field orientation within the ejecta that is an integral part of the ICME. In this study, we examine Van Allen Probes (RBSPs) and Polar Orbiting Environmental Satellites (POESs) data to explore trapped and precipitating electron fluxes during two ICMEs. The ejecta in the selected ICMEs have magnetic cloud characteristics that exhibit the opposite sense of the rotation of the north-south magnetic field component (B-Z). RBSP data are used to study trapped electron fluxes in situ, while POES data are used for electron fluxes precipitating into the upper atmosphere. The trapped and precipitating electron fluxes are qualitatively analysed to understand their variation in relation to each other and to the magnetic cloud rotation during these events. Inner magnetospheric wave activity was also estimated using RBSP and Geostationary Operational Environmental Satellite (GOES) data. In each event, the largest changes in the location and magnitude of both the trapped and precipitating electron fluxes occurred during the southward portion of the magnetic cloud. Significant changes also occurred during the end of the sheath and at the sheath-ejecta boundary for the cloud with south to north magnetic field rotation, while the ICME with north to south rotation had significant changes at the end boundary of the cloud. The sense of rotation of B-Z and its profile also clearly affects the coherence of the trapped and/or precipitating flux changes, timing of variations with respect to the ICME structures, and flux magnitude of different electron populations. The differing electron responses could therefore imply partly different dominant acceleration mechanisms acting on the outer radiation belt electron populations as a result of opposite magnetic cloud rotation.
  • Kilpua, E. K. J.; Turner, D. L.; Jaynes, A.; Hietala, H.; Koskinen, H. E. J.; Osmane, A.; Palmroth, M.; Pulkkinen, T. I.; Vainio, R.; Baker, D.; Claudepierre, S. (2019)
    We study the response of the outer Van Allen radiation belt during an intense magnetic storm on 15-22 February 2014. Four interplanetary coronal mass ejections (ICMEs) arrived at Earth, of which the three last ones were interacting. Using data from the Van Allen Probes, we report the first detailed investigation of electron fluxes from source (tens of kiloelectron volts) to core (megaelectron volts) energies and possible loss and acceleration mechanisms as a response to substructures (shock, sheath and ejecta, and regions of shock-compressed ejecta) in multiple interacting ICMEs. After an initial enhancement induced by a shock compression of the magnetosphere, core fluxes strongly depleted and stayed low for 4 days. This sustained depletion can be related to a sequence of ICME substructures and their conditions that influenced the Earth's magnetosphere. In particular, the main depletions occurred during a high-dynamic pressure sheath and shock-compressed southward ejecta fields. These structures compressed/eroded the magnetopause close to geostationary orbit and induced intense and diverse wave activity in the inner magnetosphere (ULF Pc5, electromagnetic ion cyclotron, and hiss) facilitating both effective magnetopause shadowing and precipitation losses. Seed and source electrons in turn experienced stronger variations throughout the studied interval. The core fluxes recovered during the last ICME that made a glancing blow to Earth. This period was characterized by a concurrent lack of losses and sustained acceleration by chorus and Pc5 waves. Our study highlights that the seemingly complex behavior of the outer belt during interacting ICMEs can be understood by the knowledge of electron dynamics during different substructures.
  • Grandin, Maxime; Aikio, Anita T.; Kozlovsky, Alexander (2019)
    We study the properties and geoeffectiveness of solar wind high-speed streams (HSSs) emanating from coronal holes and associated with stream interaction regions (SIRs). This paper presents a statistical study of 588 SIR/HSS events with solar wind speed at 1 AU exceeding 500 km/s during 1995-2017, encompassing the decline of solar cycle 22 to the decline of cycle 24. Events are detected using measurements of the solar wind speed and the interplanetary magnetic field. Events misidentified as or interacting with interplanetary coronal mass ejections are removed by comparison with an existing interplanetary coronal mass ejection list. Using this SIR/HSS event catalog (list given in the supporting information), a superposed epoch analysis of key solar wind parameters is carried out. It is found that the number of SIR/HSSs peaks during the late declining phase of solar cycle (SC) 23, as does their velocity, but that their geoeffectiveness in terms of the AE and SYM-H indices is low. This can be explained by the anomalously low values of magnetic field during the extended solar minimum. Within SC23 and SC24, the highest geoeffectiveness of SIR/HSSs takes place during the early declining phases. Geoeffectiveness of SIR/HSSs continues to be up to 40% lower during SC24 than SC23, which can be explained by the solar wind properties.
  • Lakka, A.; Pulkkinen, T. I.; Dimmock, A. P.; Myllys, M.; Honkonen, I.; Palmroth, M. (2018)
    It is well known that the Earth's ionospheric cross-polar cap potential (CPCP) saturates as a response to the solar wind (SW) driver especially when the level of driving is high and the interplanetary magnetic field is oriented southward. Moreover, previous studies have shown that the upstream Alfven Mach number may be an important factor in the saturation effect. While the CPCP is often viewed as a measure of the SW-magnetosphere-ionosphere coupling, the processes associated with the nonlinearity of the coupling remain an open issue. We use fourth edition of the Grand Unified Magnetosphere-Ionosphere Coupling Simulation (GUMICS-4) and artificial SW data to mimic weak and strong driving in order to study the CPCP response to a wide range of interplanetary magnetic field magnitudes (3.5-30 nT) and upstream Alfven Mach number values (1.2-22). The results provide the first overview of the CPCP saturation in GUMICS-4 and show that the onset of saturation is strongly dependent on the upstream Alfven Mach number and the physical processes responsible for the saturation effect might take place both in the Earth's magnetosheath and in the upstream SW.