Browsing by Subject "GLUTAMATE RECEPTORS"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Hlushchenko, Iryna; Khanal, Pushpa; Abouelezz, Amr; Paavilainen, Ville O.; Hotulainen, Pirta (2018)
    Many actin cytoskeleton-regulating proteins control dendritic spine morphology and density, which are cellular features often altered in autism spectrum disorder (ASD). Recent studies using animal models show that autism-related behavior can be rescued by either manipulating actin regulators or by reversing dendritic spine density or morphology. Based on these studies, the actin cytoskeleton is a potential target pathway for developing new ASD treatments. Thus, it is important to understand how different ASD-associated actin regulators contribute to the regulation of dendritic spines and how ASD-associated mutations modulate this regulation. For this study, we selected five genes encoding different actin-regulating proteins and induced ASD-associated de novo missense mutations in these proteins. We assessed the functionality of the wild-type and mutated proteins by analyzing their subcellular localization, and by analyzing the dendritic spine phenotypes induced by the expression of these proteins. As the imbalance between excitation and inhibition has been suggested to have a central role in ASD, we additionally evaluated the density, size and subcellular localization of inhibitory synapses. Common for all the proteins studied was the enrichment in dendritic spines. ASD-associated mutations induced changes in the localization of alpha-actinin-4, which localized less to dendritic spines, and for SWAP-70 and SrGAP3, which localized more to dendritic spines. Among the wild-type proteins studied, only alpha-actinin-4 expression caused a significant change in dendritic spine morphology by increasing the mushroom spine density and decreasing thin spine density. We hypothesized that mutations associated with ASD shift dendritic spine morphology from mushroom to thin spines. An M554V mutation in alpha-actinin-4 (ACTN4) resulted in the expected shift in dendritic spine morphology by increasing the density of thin spines. In addition, we observed a trend toward higher thin spine density withmutations inmyosin IXb and SWAP-70. Myosin IIb and myosin IXb expression increased the proportion of inhibitory synapses in spines. The expression of mutated myosin IIb (Y265C), SrGAP3 (E469K), and SWAP-70 (L544F) induced variable changes in inhibitory synapses.
  • Maksimovic, Milica; Vekovischeva, Olga Y.; Aitta-aho, Teemu; Korpi, Esa R. (2014)
  • von Ossowski, Lotta; Li, Li-Li; Möykkynen, Tommi; Coleman, Sarah K.; Courtney, Michael J.; Keinänen, Kari (2017)
    Recent studies indicate that glutamatergic signaling involves, and is regulated by, thiol modifying and redox-active compounds. In this study, we examined the role of a reactive cysteine residue, Cys-893, in the cytosolic C-terminal tail of GluA1 AMPA receptor as a potential regulatory target. Elimination of the thiol function by substitution of serine for Cys-893 led to increased steady-state expression level and strongly reduced interaction with SAP97, a major cytosolic interaction partner of GluA1 C-terminus. Moreover, we found that of the three cysteine residues in GluA1 C-terminal tail, Cys-893 is the predominant target for Snitrosylation induced by exogenous nitric oxide donors in cultured cells and lysates. Co-precipitation experiments provided evidence for native association of SAP97 with neuronal nitric oxide synthase (nNOS) and for the potential coupling of Ca2+- permeable GluA1 receptors with nNOS via SAP97. Our results show that Cys-893 can serve as a molecular target for regulatory thiol modifications of GluA1 receptors, including the effects of nitric oxide.
  • Danesi, Claudia Elisabetta; Keinänen, Kari Pekka; Castren, Maija Liisa (2019)
    Fragile X syndrome (FXS) is a neurodevelopmental disorder that represents a common cause of intellectual disability and is a variant of autism spectrum disorder (ASD). Studies that have searched for similarities in syndromic and non-syndromic forms of ASD have paid special attention to alterations of maturation and function of glutamatergic synapses. Copy number variations (CNVs) in the loci containing genes encoding alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) subunits are associated with ASD in genetic studies. In FXS, dysregulated AMPAR subunit expression and trafficking affect neural progenitor differentiation and synapse formation and neuronal plasticity in the mature brain. Decreased expression of GluA2, the AMPAR subunit that critically controls Ca2+-permeability, and a concomitant increase in Ca2+-permeable AMPARs (CP-AMPARs) in human and mouse FXS neural progenitors parallels changes in expression of GluA2-targeting microRNAs (miRNAs). Thus, posttranscriptional regulation of GluA2 by miRNAs and subsequent alterations in calcium signaling may contribute to abnormal synaptic function in FXS and, by implication, in some forms of ASD.
  • Vesikansa, Aino; Sakha, Prasanna; Kuja-Panula, Juha; Molchanova, Svetlana; Rivera Baeza, Claudio; Huttunen, Henri J.; Rauvala, Heikki; Taira, Tomi; Lauri, Sari E. (2012)
  • Atanasova, Tsvetomira; Kharybina, Zoya; Kaarela, Tiina Anna Marjatta; Huupponen, Johanna Tuulia; Luchkina, Natalia; Taira, Tomi Petteri; Lauri, Sari Elina (2019)
    During the course of development, molecular mechanisms underlying activity-dependent synaptic plasticity change considerably. At immature CA3-CA1 synapses in the hippocampus, PKA-driven synaptic insertion of GluA4 AMPA receptors is the predominant mechanism for synaptic strengthening. However, the physiological significance of the developmentally restricted GluA4-dependent plasticity mechanisms is poorly understood. Here we have used microelectrode array (MEA) recordings in GluA4 deficient slice cultures to study the role of GluA4 in early development of the hippocampal circuit function. We find that during the first week in culture (DIV2-6) when GluA4 expression is restricted to pyramidal neurons, loss of GluA4 has no effect on the overall excitability of the immature network, but significantly impairs synchronization of the CA3 and CA1 neuronal populations. In the absence of GluA4, the temporal correlation of the population spiking activity between CA3-CA1 neurons was significantly lower as compared to wild-types at DIV6. Our data show that synapse-level defects in transmission and plasticity mechanisms are efficiently compensated for to normalize population firing rate at the immature hippocampal network. However, lack of the plasticity mechanisms typical for the immature synapses may perturb functional coupling between neuronal sub-populations, a defect frequently implicated in the context of developmentally originating neuropsychiatric disorders.
  • Kiiskinen, Tuomo; Korpi, Esa R.; Aitta-aho, Teemu (2019)
    Extinction and reinstatement of morphine-induced conditioned place preference were studied in glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-receptor GluA1 subunit-deficient mice (global GluA1-KO mice). In line with previous findings, both acquisition and expression of conditioned place preference to morphine (20 mg/kg, subcutaneously) were fully functional in GluA1 KO mice compared with wild-type littermate controls (GluA1-WT), thus enabling the study of extinction. With a 10-session extinction paradigm, the GluA1 KO mice showed complete extinction similar to that of the GluA1-WT mice. Morphine-induced reinstatement (10 mg/kg, subcutaneously) was detected in both mouse lines. GluA1 KO mice moved more during all the phases of the experiment, including the place conditioning trials, extinction sessions, and place preference tests. The results suggest that the GluA1 subunit may be dispensable or prone to compensation at the neural circuitries delineating extinction and reinstatement. The GluA1 KO mice show altered long-term between-session habituation, which extends longer than previously anticipated.
  • Jin, Zhe; Bhandage, Amol K.; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R.; Birnir, Bryndis (2014)