Browsing by Subject "GLYCOSYLATION"

Sort by: Order: Results:

Now showing items 1-12 of 12
  • Nummela, Pirjo; Heiskanen, Annamari; Kytölä, Soili; Haglund, Caj; Lepistö, Anna; Satomaa, Tero; Ristimäki, Ari (2021)
    Pseudomyxoma peritonei (PMP) is a highly mucinous adenocarcinoma growing in the peritoneal cavity and most commonly originating from the appendix. Glycans play an important role in carcinogenesis, and glycosylation is altered in malignant diseases, including PMP. We have previously demonstrated that fucosylation of N-glycans is increased in PMP, but we did not observe modulation of overall sialylation. As sialic acids can be attached to the rest of the glycan via α2,3- or α2,6-linkage, we have now analyzed the linkage patterns of sialic acids in tissue specimens of normal appendices, low-grade appendiceal mucinous neoplasms (LAMN), low-grade (LG) PMP and high-grade (HG) PMP. For the linkage analysis, the enzymatically released acidic N-glycans were first treated with ethyl esterification or α2,3-sialidase digestion followed by MALDI-TOF mass spectrometry. Significant increase in the relative abundance of α2,6-sialylated and decrease in α2,3-sialylated N-glycans was observed in PMP tumors as compared to the normal appendices (P \lt; 0.025). More specifically, increased α2,6-sialylation (P \lt; 0.05) and decreased α2,3-sialylation (P \lt; 0.01) were detected in afucosylated and monofucosylated N-glycans of PMPs, whereas the less abundant multifucosylated glycans, containing terminal fucose, demonstrated increased α2,3-sialylation (P \lt; 0.01). Importantly, the increase in α2,6-sialylation was also detected between PMP and the appendiceal precursor lesion LAMN (P \lt; 0.01). The identified glycosylation alterations produce ligands for sialic acid-binding immunoglobulin-like lectins (Siglecs) and sialofucosylated glycans binding selectins, which play a role in the peritoneal dissemination and progression of the disease.
  • Vijayan, Madhavi; Lee, Cheuk-Lun; Wong, Vera H. H.; Wang, Xia; Bai, Kungfeng; Wu, Jian; Koistinen, Hannu; Seppälä, Markku; Lee, Kai-Fai; Yeung, William S. B.; Ng, Ernest H. Y.; Chiu, Philip C. N. (2020)
    Decidual macrophages constitute 20-30% of the total leukocytes in the uterus of pregnant women, regulating the maternal immune tolerance and placenta development. Abnormal number or activities of decidual macrophages (dMs) are associated with fetal loss and pregnancy complications, such as preeclampsia. Monocytes differentiate into dMs in a decidua-specific microenvironment. Despite their important roles in pregnancy, the exact factors that regulate the differentiation into dMs remain unclear. Glycodelin-A (PAEP, hereafter referred to as GdA) is a glycoprotein that is abundantly present in the decidua, and plays an important role in fetomaternal defense and placental development. It modulates the differentiation and activity of several immune cell types residing in the decidua. In this study, we demonstrated that GdA induces the differentiation of human monocytes into dM-like phenotypes in terms of transcriptome, cell surface marker expression, secretome, and regulation of trophoblast and endothelial cell functions. We found that Sialic acid-binding Ig-like lectin 7 (Siglec-7) mediates the binding and biological actions of GdA in a sialic acid-dependent manner. We, therefore, suggest that GdA, induces the polarization of monocytes into dMs to regulate fetomatemal tolerance and placental development.
  • Bignon, Eduardo A.; Chou, Kevin R.; Roine, Elina; Tischler, Nicole D. (2022)
    (1) Background: Haloarchaea comprise extremely halophilic organisms of the Archaea domain. They are single-cell organisms with distinctive membrane lipids and a protein-based cell wall or surface layer (S-layer) formed by a glycoprotein array. Pleolipoviruses, which infect haloarchaeal cells, have an envelope analogous to eukaryotic enveloped viruses. One such member, Halorubrum pleomorphic virus 6 (HRPV-6), has been shown to enter host cells through virus-cell membrane fusion. The HRPV-6 fusion activity was attributed to its VP4-like spike protein, but the physiological trigger required to induce membrane fusion remains yet unknown. (2) Methods: We used SDS-PAGE mass spectroscopy to characterize the S-layer extract, established a proteoliposome system, and used R18-fluorescence dequenching to measure membrane fusion. (3) Results: We show that the S-layer extraction by Mg2+ chelating from the HRPV-6 host, Halorubrum sp. SS7-4, abrogates HRPV-6 membrane fusion. When we in turn reconstituted the S-layer extract from Hrr. sp. SS7-4 onto liposomes in the presence of Mg2+, HRPV-6 membrane fusion with the proteoliposomes could be readily observed. This was not the case with liposomes alone or with proteoliposomes carrying the S-layer extract from other haloarchaea, such as Haloferax volcanii. (4) Conclusions: The S-layer extract from the host, Hrr. sp. SS7-4, corresponds to the physiological fusion trigger of HRPV-6.
  • Pulkkinen, Lauri I. A.; Barrass, Sarah; Domanska, Ausra; Overby, Anna K.; Anastasina, Maria; Butcher, Sarah J. (2022)
    Tick-borne encephalitis virus (TBEV) is a pathogenic, enveloped, positive-stranded RNA virus in the family Flaviviridae. Structural studies of flavivirus virions have primarily focused on mosquito-borne species, with only one cryo-electron microscopy (cryo-EM) structure of a tick-borne species published. Here, we present a 3.3 angstrom cryo-EM structure of the TBEV virion of the Kuutsalo-14 isolate, confirming the overall organisation of the virus. We observe conformational switching of the peripheral and transmembrane helices of M protein, which can explain the quasi-equivalent packing of the viral proteins and highlights their importance in stabilising membrane protein arrangement in the virion. The residues responsible for M protein interactions are highly conserved in TBEV but not in the structurally studied Hypr strain, nor in mosquito-borne flaviviruses. These interactions may compensate for the lower number of hydrogen bonds between E proteins in TBEV compared to the mosquito-borne flaviviruses. The structure reveals two lipids bound in the E protein which are important for virus assembly. The lipid pockets are comparable to those recently described in mosquito-borne Zika, Spondweni, Dengue, and Usutu viruses. Our results thus advance the understanding of tick-borne flavivirus architecture and virion-stabilising interactions.
  • Holm, Matilda; Nummela, Pirjo; Heiskanen, Annamari; Satomaa, Tero; Kaprio, Tuomas; Mustonen, Harri; Ristimäki, Ari; Haglund, Caj (2020)
    Alterations in glycosylation are seen in many types of cancer, including colorectal cancer (CRC). Glycans, the sugar moieties of glycoconjugates, are involved in many important functions relevant to cancer and can be of value as biomarkers. In this study, we have used mass spectrometry to analyze the N-glycan profiles of 35 CRC tissue samples and 10 healthy tissue samples from non-CRC patients who underwent operations for other reasons. The tumor samples were divided into groups depending on tumor location (right or left colon) and stage (II or III), while the healthy samples were divided into right or left colon. The levels of neutral and acidic N-glycan compositions and glycan classes were analyzed in a total of ten different groups. Surprisingly, there were no significant differences in glycan levels when all right- and left-sided CRC samples were compared, and few differences (such as in the abundance of the neutral N-glycan H3N5) were seen when the samples were divided according to both location and stage. Multiple significant differences were found in the levels of glycans and glycan classes when stage II and III samples were compared, and these glycans could be of value as candidates for new markers of cancer progression. In order to validate our findings, we analyzed healthy tissue samples from the right and left colon and found no significant differences in the levels of any of the glycans analyzed, confirming that our findings when comparing CRC samples from the right and left colon are not due to normal variations in the levels of glycans between the healthy right and left colon. Additionally, the levels of the acidic glycans H4N3F1P1, H5N4F1P1, and S1H5N4F1 were found to change in a cancer-specific but colon location-nonspecific manner, indicating that CRC affects glycan levels in similar ways regardless of tumor location.
  • Evers, Mitchell; Ten Broeke, Toine; Jansen, J.H. Marco; Nederend, Maaike; Hamdan, Firas; Reiding, Karli R.; Meyer, Saskia; Moerer, Petra; Brinkman, Iris; Rösner, Thies; Lebbink, Robert Jan; Valerius, Thomas; Leusen, Jeanette H.W. (2020)
    ABSTRACT Current combination therapies elicit high response rates in B cell malignancies, often using CD20 antibodies as the backbone of therapy. However, many patients eventually relapse or develop progressive disease. Therefore, novel CD20 antibodies combining multiple effector mechanisms were generated. To study whether neutrophil-mediated destruction of B cell malignancies can be added to the arsenal of effector mechanisms, we chimerized a panel of five previously described murine CD20 antibodies to the human IgG1, IgA1 and IgA2 isotype. Of this panel, we assessed in vitro antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and direct cell death induction capacity and studied the efficacy in two different in vivo mouse models. IgA antibodies outperformed IgG1 antibodies in neutrophil-mediated killing in vitro, both against CD20-expressing cell lines and primary patient material. In these assays, we observed loss of CD19 with both IgA and IgG antibodies. Therefore, we established a novel method to improve the assessment of B-cell depletion by CD20 antibodies by including CD24 as a stable cell marker. Subsequently, we demonstrated that only IgA antibodies were able to reduce B cell numbers in this context. Additionally, IgA antibodies showed efficacy in both an intraperitoneal tumor model with EL4 cells expressing huCD20 and in an adoptive transfer model with huCD20-expressing B cells. Taken together, we show that IgA, like IgG, can induce ADCC and CDC, but additionally triggers neutrophils to kill (malignant) B cells. We conclude that antibodies of the IgA isotype offer an attractive repertoire of effector mechanisms for the treatment of CD20-expressing malignancies.
  • Gondane, Aishwarya; Girmay, Samuel; Helevä, Alma; Pallasaho, Satu; Loda, Massimo; Itkonen, Harri M. (2022)
    Background: Transcription, metabolism and DNA damage response are tightly regulated to preserve the genomic integrity, and O-GlcNAc transferase (OGT) is positioned to connect the three. Prostate cancer is the most common cancer in men, and androgen-ablation therapy halts disease progression. However, a significant number of prostate cancer patients develop resistance against anti-androgens, and this incurable disease is termed castration-resistant prostate cancer (CRPC). We have shown that combined inhibition of OGT and the transcription elongation kinase CDK9 induce CRPC-selective anti-proliferative effects. Here, we explain the functional basis for these combinatorial effects. Methods: We used comprehensive mass spectrometry profiling of short-term CDK9 inhibitor effects on O-GlcNAcylated proteins in an isogenic cell line system that models transition from PC to CRPC. In addition, we used both ChIP-seq and RNA-seq profiling, and pulldown experiments in multiple CRPC models. Finally, we validated our findings in prostate cancer patient samples. Results: Inhibition of CDK9 results in an OGT-dependent remodeling of the proteome in prostate cancer cells. More specifically, the activity of the DNA damage repair protein MRE11 is regulated in response to CDK9 inhibition in an OGT-dependent manner. MRE11 is enriched at the O-GlcNAc-marked loci. CDK9 inhibition does not decrease the expression of mRNAs whose genes are bound by both O-GlcNAc and MRE11. Combined inhibition of CDK9 and OGT or MRE11 further decreases RNA polymerase II activity, induces DNA damage signaling, and blocks the survival of prostate cancer cells. These effects are seen in CRPC cells but not in normal prostate cells. Mechanistically, OGT activity is required for MRE11 chromatin-loading in cells treated with CDK9 inhibitor. Finally, we show that MRE11 and O-GlcNAc are enriched at the prostate cancer-specific small nucleotide polymorphic sites, and the loss of MRE11 activity results in a hyper-mutator phenotype in patient tumors. Conclusions: Both OGT and MRE11 are essential for the repair of CDK9 inhibitor-induced DNA damage. Our study raises the possibility of targeting CDK9 to elicit DNA damage in CRPC setting as an adjuvant to other treatments.
  • Rahikainen, Jenni; Anbarasan, Sasikala; Wahlström, Ronny; Parviainen, Arno; King, Alistair W. T.; Puranen, Terhi; Kruus, Kristiina; Kilpeläinen, Ilkka; Turunen, Ossi; Suurnäkki, Anna (2018)
    BACKGROUNDThis study elaborates the possibility to apply combined ionic liquid (IL) and enzyme treatments for pulp fibre modification. The approach involves swelling of fibre surfaces with IL followed by enzymatic modification of the disrupted fibre surface using carbohydrate active enzymes. RESULTSThe capacity of seven cellulose-dissolving or cellulose-swelling ionic liquids to swell pulp fibres was compared. In addition, thirteen cellulases and five xylanases were screened for their IL tolerance, which determines their applicability in combined or sequential IL-enzyme treatments of fibres. Among the studied ionic liquids, 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DMP) and 1,3-dimethylimidazolium dimethylphosphate ([DMIM]DMP) had the strongest effect on fibre swelling. These solvents were also found to be the least inactivating for the studied enzymes. CONCLUSIONEnzyme compatibility and cellulose-dissolving capability are not two conflicting properties of an ionic liquid. (c) 2017 Society of Chemical Industry
  • FinnDiane Study Grp; Waden, Jenny M.; Dahlström, Emma H.; Elonen, Nina; Thorn, Lena M.; Waden, Johan; Sandholm, Niina; Forsblom, Carol; Groop, Per-Henrik (2019)
    Aims/hypothesis Activation of the receptor for AGE (RAGE) has been shown to be associated with diabetic nephropathy. The soluble isoform of RAGE (sRAGE) is considered to function as a decoy receptor for RAGE ligands and thereby protects against diabetic complications. A possible association between sRAGE and diabetic nephropathy is still, however, controversial and a more comprehensive analysis of sRAGE with respect to diabetic nephropathy in type 1 diabetes is therefore warranted. Methods sRAGE was measured in baseline serum samples from 3647 participants with type 1 diabetes from the nationwide multicentre Finnish Diabetic Nephropathy (FinnDiane) Study. Associations between sRAGE and diabetic nephropathy, as well as sRAGE and diabetic nephropathy progression, were evaluated by regression, competing risks and receiver operating characteristic curve analyses. The non-synonymous SNP rs2070600 (G82S) was used to test causality in the Mendelian randomisation analysis. Results Baseline sRAGE concentrations were highest in participants with diabetic nephropathy, compared with participants with a normal AER or those with microalbuminuria. Baseline sRAGE was associated with progression from macroalbuminuria to end-stage renal disease (ESRD) in the competing risks analyses, but this association disappeared when eGFR was entered into the model. The SNP rs2070600 was strongly associated with sRAGE concentrations and with progression from macroalbuminuria to ESRD. However, Mendelian randomisation analysis did not support a causal role for sRAGE in progression to ESRD. Conclusions/interpretations RAGE is associated with progression from macroalbuminuria to ESRD, but does not add predictive value on top of conventional risk factors. Although sRAGE is a biomarker of diabetic nephropathy, in light of the Mendelian randomisation analysis it does not seem to be causally related to progression from macroalbuminuria to ESRD.
  • Watanabe, Yasunori; Raghwani, Jayna; Allen, Joel D.; Seabright, Gemma E.; Li, Sai; Moser, Felipe; Huiskonen, Juha T.; Strecker, Thomas; Bowden, Thomas A.; Crispin, Max (2018)
    Lassa virus is an Old World arenavirus endemic to West Africa that causes severe hemorrhagic fever. Vaccine development has focused on the envelope glycoprotein complex (GPC) that extends from the virion envelope. The often inadequate antibody immune response elicited by both vaccine and natural infection has been, in part, attributed to the abundance of N-linked glycosylation on the GPC. Here, using a virus-like-particle system that presents Lassa virus GPC in a native-like context, we determine the composite population of each of the N-linked glycosylation sites presented on the trimeric GPC spike. Our analysis reveals the presence of underprocessed oligomannose-type glycans, which form punctuated clusters that obscure the proteinous surface of both the GP1 attachment and GP2 fusion glycoprotein subunits of the Lassa virus GPC. These oligomannose clusters are seemingly derived as a result of sterically reduced accessibility to glycan processing enzymes, and limited amino acid diversification around these sites supports their role protecting against the humoral immune response. Combined, our data provide a structure-based blueprint for understanding how glycans render the glycoprotein spikes of Lassa virus and other Old World arenaviruses immunologically resistant targets.
  • Wawryszyn, Mirella; Sauter, Paul F.; Nieger, Martin; Koos, Martin R. M.; Koehler, Christine; Luy, Burkhard; Lemke, Edward A.; Bräse, Stefan (2018)
    Chemically produced, accurately linkable oligosaccharides are of importance for the synthesis of neo-glycoproteins. On the route to high-mannose type N-glycans, we present a convenient synthesis of several glycans bearing an azide moiety at the reducing end. An azido-glycan core structure as valuable precursor was modified into the protected N-glycan pentasaccharide core structure and the possibility of modular attachment of different antenna was demonstrated through synthesis of a pentamannose donor and glycosylation with the core structure. The azido function allows for chemical ligation with recombinantly modified proteins featuring noncanonical cyclooctyne amino acids, providing access to customized glycopatterns of glycoproteins, e.g., of antibodies that are of high interest for biopharmaceutical applications.
  • Saraswat, Mayank; Mäkitie, Antti; Tohmola, Tiialotta; Dickinson, Amy; Saraswat, Shruti; Joenväärä, Sakari; Renkonen, Suvi (2018)
    Purpose Experimental design There are no blood biomarkers to detect early-stage oral cavity squamous cell carcinoma (OSCC) prior to clinical signs. Most OSCC incidence is associated with significant morbidity and poor survival. The authors aimed to use mass-spectrometry (MS) technology to find specific N-glycopeptides potentially serving as serum biomarkers for preclinical OSCC screening. Serum samples from 14 patients treated for OSCC (stage I or stage IV) with 12 age- and sex-matched controls are collected. Quantitative label-free N-glycoproteomics is performed, with MS/MS analysis of the statistically significantly different N-glycopeptides. Results Conclusions and clinical relevance Combined with a database search using web-based software (GlycopeptideID), MS/MS provided detailed N-glycopeptide information, including glycosylation site, glycan composition, and proposed structures. Thirty-eight tryptic N-glycopeptides are identified, having 19 unique N-glycosylation sites representing 14 glycoproteins. OSCC patients, including stage I tumors, can be differentiated from healthy controls based on the expression levels of these glycoforms. N-glycopeptides of IgG1, IgG4, haptoglobin, and transferrin have statistically significant different abundances between cases and controls. The authors are the first to suggest specific N-glycopeptides to serve as potential serum biomarkers to detect preclinical OSCC in patients. These N-glycopeptides are the lead candidates for validation as future diagnostic modalities of OSCC as early as stage I.