Sort by: Order: Results:

Now showing items 1-20 of 20
  • Li, Quan; Song, Xinzhang; Yrjälä, Kim; Lv, Jianhua; Li, Yongfu; Wu, Jiasheng; Qin, Hua (2020)
    Increased reactive N deposition has widespread effects on terrestrial ecosystems, such as biodiversity loss, soil acidification, as well as stimulated plant growth. Empirical studies show that biochar often affects soil quality, crop productivity, soil microbial community composition and enzyme activities. However, the effect of biochar addition on forest soil bacterial community along with enzyme activities under nitrogen (N) deposition and its related mechanisms have not been well studied yet. Therefore, a 2-year field study was conducted to investigate the effects of biochar amendment (0, 20, 40 kg biochar ha−1 yr−1) on soil nutrients, enzyme activities, and bacterial community in a Torreya grandis orchard under different levels of N deposition (0, 30, 60 kg N ha−1 yr−1). N deposition significantly increased soil nutrients availability, such as N, phosphorus (P) and potassium (K), while biochar amendment led to significant increase in soil pH, organic carbon (SOC), total N (TN), total P (TP), available P (AP) and available K (AK). Both N deposition and biochar amendment significantly decreased the soil microbial biomass carbon (MBC), altered soil microbial community and enzyme activities significantly. Biochar addition increased the relative abundance of phylum Proteobacteria under different levels of N deposition, but had variable effect on Acidobacteria groups. Non-metric multidimensional scaling (NMDS) indicated that biochar amendment can mitigate the effect of N deposition on soil bacterial community composition and enzyme activities. Soil pH and SOC played an important role in shaping soil bacterial community composition, while available AP and AK contents significantly related to the variation of soil enzyme activities. Structure equation modeling (SEM) revealed that N deposition had negative effect on soil enzyme activities while biochar amendment can mitigate this negative effect through increasing AP content. Our result suggests that biochar amendment can mitigate the alteration of soil bacterial community and enzyme activities induced by N deposition, and this mitigation effect was linked to the alteration of soil physicochemical properties, especially the increased AP content. Thus, biochar amendment could be a promising way to develop sustainable forest management under increasing N deposition.
  • Raheem, Dele; Ferrer, Borja Ramis; Lastra, Jose L. Martinez (Routledge, 2021)
    Routledge Research in Polar Regions
    Food processing, storage, and distribution are at the centre of environmental damage. Food security gaps include failure to track the geographical origin of foods, food waste, food safety and the quality of food products. To achieve sustainability, changes are required in food supply chains and the entire food system. Consumers need information to make informed choices about what to eat. They need to know where food came from, the conditions under which it grew, and the food’s nutritional profile. The food industry has been slow to take advantage of the internet. However, with increasing interests in redistributed manufacturing, circumpolar regions such as the European High North will need to digitise. The Internet of Food (IoF) is an emerging trend. It will make food traceable, transparent, and trustworthy and empower consumers with more personalised food that caters precisely to individual food, diet, and health choices. It is therefore important to build an information infrastructure around the IoF. This chapter examines how food security gaps can be bridged by collating data that will help to leapfrog local foods into the digital era.
  • Lind, Saara E.; Shurpali, Narasinha J.; Peltola, Olli; Mammarella, Ivan; Hyvonen, Niina; Maljanen, Marja; Raty, Mari; Virkajarvi, Perttu; Martikainen, Pertti J. (2016)
    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinacea L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured from July 2009 until the end of 2011 using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha(-1) in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m(-2) in 2010 and 2011, respectively. Throughout the study period from July 2009 until the end of 2011, cumulative NEE was -575 g C m(-2). Carbon balance and its regulatory factors were compared to the published results of a comparison site on drained organic soil cultivated with RCG in the same climate. On this mineral soil site, the RCG had higher capacity to take up CO2 from the atmosphere than on the comparison site.
  • von Schneidemesser, Erika; Monks, Paul S.; Allan, James D.; Bruhwiler, Lori; Forster, Piers; Fowler, David; Lauer, Axel; Morgan, William T.; Paasonen, Pauli; Righi, Mattia; Sindelarova, Katerina; Sutton, Mark A. (2015)
  • Torres-Miralles, Miriam; Särkelä, K.; Koppelmaki, K.; Lamminen, Marjukka; Tuomisto, Hanna; Herzon, Iryna (2022)
    Sustainability of livestock production is a highly contested issue in agricultural sustainability discourse. This study aimed to assess the environmental impact of farms using semi-natural grasslands in Finland, or so-called High Nature Value (HNV) farms. We estimated the environmental impact of 11 such farms, including greenhouse gas emissions (GHG), nitrogen (N) balance, land occupation, and carbon storage. We also accounted for unique biodiversity, defined in this study as communities that are dependent on semi-natural grasslands. We compared these to the alternative states of the farms, specifically a hypothetical farm with the same production output but without access to semi natural grasslands. GHG emissions at the farm level (tCO(2eq)/ha) in HNV farms were 64% lower than on the alternative farms; GHG emissions at the product level (tCO(2eq)/t LW) and N balance (N kg/ha) were 31% and 235% lower, respectively. The carbon stocks were 163% higher at farm level. Biodiversity values, indicated by the share of semi-natural grassland in management, ranged from 23% to 83% on HNV farms. Six out of eleven farms would need to increase their arable land occupation by an average of 39% of arable land to fulfil their needs for animal feed if they did not utilize semi-natural grassland. This study contributes to growing evidence that HNV farming systems can support sustainable production by minimising arable land occupation, reducing nutrient loses, and increasing carbon storage while maintaining unique biodiversity.
  • Cai, Xiaoqing; Lin, Ziwen; Penttinen, Petri; Li, Yongfu; Li, Yongchun; Luo, Yu; Yue, Tian; Jiang, Peikun; Fu, Weijun (2018)
    Converting natural forests to plantations would markedly change soil physiochemical and biological properties, as a consequence of changing plant vegetative coverage and management practices. However, the effects of such land-use change on the soil nutrient pools and related enzymes activities still remain unclear. The aim of this study was to explore the effects of conversion from natural evergreen broadleaf forests to Moso bamboo plantations on the pool sizes and forms of soil N, P and K, microbial biomass, and nutrient cycling related enzyme activities. Soil samples from four adjacent evergreen broadleaf forest-Moso bamboo plantation pairs were collected from a subtropical region in Zhejiang Province, China. The soil organic C (SOC), total N (TN), total P (TP) and total K (TK) concentrations and stocks and different N, P and K forms were measured, and the microbial biomass C (MBC), microbial biomass N (MBN), microbial biomass P (MBP) and four soil enzymes (protease, urease, acid phosphatase and catalase) were determined. The results showed that converting broadleaf forests to Moso bamboo plantations decreased the concentration and stock of SOC but increased those of TK in both soil layers (0-20 and 20-40 cm), and such land-use change increased the concentration and stock of TN and TP only in the 0-20 cm soil layer (P <0.05). This land-use conversion increased the concentrations of NH4+-N, NO3- N, resin-Pi, NaHCO3-P-1, NaOH-P-i, HCl-P-i, available K and slowly available K, but decreased the concentrations of water-soluble organic nitrogen (WSON), NaHCO3-P-o and NaOH-P-o (P <0.05). Further, this land-use change decreased the microbial biomass and activities of protease, urease, acid phosphatase and catalase (P <0.05). In addition, the acid phosphatase activity correlated positively with the concentrations of MBP and NaHCO3-P-o, and the activities of urease and protease correlated positively with the concentrations of MBN and WSON (P <0.01). To conclude, converting natural broadleaf forests to Moso bamboo plantations had positive effects on soil inorganic N, P and K pools, and negative effects on soil organic N and P pools, and on N- and P-cycling related enzyme activities. Therefore, management practices that increase organic nutrient pools and microbial activity are needed to be developed to mitigate the depletion of organic nutrient pools after the land-use conversion.
  • Loisel, J.; Loisel, J.; Amesbury, Matthew J.; Magnan, G.; Anshari, G.; Beilman, D. W.; Benavides, J. C.; Blewett, J.; Camill, P.; Charman, D. J.; Chawchai, S.; Hedgpeth, A.; Kleinen, T.; Korhola, Atte; Large, D.; Mansilla, C. A.; Muller, J.; van Bellen, S.; West, J. B.; Yu, Z.; Bubier, J. L.; Garneau, M.; Moore, T.; Sannel, A. B. K.; Page, S.; Väliranta, Minna; Bechtold, M.; Brovkin, Victor; Cole, L. E. S.; Chanton, J. P.; Christensen, T. R.; Davies, M. A.; De Vleeschouwer, F.; Finkelstein, S. A.; Frolking, S.; Galka, M.; Gandois, L.; Girkin, N.; Harris, L.; Heinemeyer, A.; Hoyt, A. M.; Jones, M. C.; Joos, F.; Juutinen, Sari; Kaiser, K.; Lacourse, T.; Lamentowicz, M.; Larmola, T.; Leifeld, J.; Lohila, Annalea Katriina; Milner, A. M.; Minkkinen, Kari; Moss, P.; Naafs, B. D. A.; Nichols, J.; O'Donnell, J.; Payne, R.; Philben, M.; Piilo, Sanna; Quillet, A.; Ratnayake, A. S.; Roland, T. P.; Sjogersten, S.; Sonnentag, O.; Swindles, G. T.; Swinnen, W.; Talbot, J.; Treat, C.; Valach, A. C.; Wu, J. (2021)
    Peatlands are impacted by climate and land-use changes, with feedback to warming by acting as either sources or sinks of carbon. Expert elicitation combined with literature review reveals key drivers of change that alter peatland carbon dynamics, with implications for improving models. The carbon balance of peatlands is predicted to shift from a sink to a source this century. However, peatland ecosystems are still omitted from the main Earth system models that are used for future climate change projections, and they are not considered in integrated assessment models that are used in impact and mitigation studies. By using evidence synthesized from the literature and an expert elicitation, we define and quantify the leading drivers of change that have impacted peatland carbon stocks during the Holocene and predict their effect during this century and in the far future. We also identify uncertainties and knowledge gaps in the scientific community and provide insight towards better integration of peatlands into modelling frameworks. Given the importance of the contribution by peatlands to the global carbon cycle, this study shows that peatland science is a critical research area and that we still have a long way to go to fully understand the peatland-carbon-climate nexus.
  • Chauhan, Chetna; Dhir, Amandeep; Akram, Manzoor Ul; Salo, Jari (2021)
    This study examines the state of the art of the literature in the domain of food loss and waste (FLW) in food supply chains (FSC). The authors used a systematic literature review (SLR) approach to examine and synthesise the findings of the existing literature to identify the key research themes, research gaps and avenues of future research on FLW in FSC. To this end, this SLR considered 152 articles relevant for the review. The authors uncovered the extant literature in the domain by presenting the research profile of the selected studies, along with thematic analysis. The authors identified eight key themes from the extant literature. The themes range from factors responsible for FLW generation to new, emerging areas of research such as digitalisation and food surplus redistribution. The study's findings will help clarify existing practices in FSC for waste mitigation and act as a foundation for strategic and policy initiatives in this area. The findings indicate that the major factors responsible for FLW include the poor management of perishable food items, stakeholder attitudes, buyer-supplier agreements and supply chain interruptions. Some of the important implications of the study include formal guidelines and policy-level interventions for assisting the accurate quantification of FLW along with an impetus on digitalisation to reduce FLW. The study concludes with the development of a research framework to assist future research in this domain. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (
  • Mander, Ulo; Krasnova, Alisa; Escuer-Gatius, Jordi; Espenberg, Mikk; Schindler, Thomas; Machacova, Katerina; Parn, Jaan; Maddison, Martin; Megonigal, J. Patrick; Pihlatie, Mari; Kasak, Kuno; Niinemets, Ulo; Junninen, Heikki; Soosaar, Kaido (2021)
    Riparian forests are known as hot spots of nitrogen cycling in landscapes. Climate warming speeds up the cycle. Here we present results from a multi-annual high temporal-frequency study of soil, stem, and ecosystem (eddy covariance) fluxes of N2O from a typical riparian forest in Europe. Hot moments (extreme events of N2O emission) lasted a quarter of the study period but contributed more than half of soil fluxes. We demonstrate that high soil emissions of N2O do not escape the ecosystem but are processed in the canopy. Rapid water content change across intermediate soil moisture was a major determinant of elevated soil emissions in spring. The freeze-thaw period is another hot moment. However, according to the eddy covariance measurements, the riparian forest is a modest source of N2O. We propose photochemical reactions and dissolution in canopy-space water as reduction mechanisms.
  • Wiedenhofer, Dominik; Smetschka, Barbara; Akenji, Lewis; Jalas, Mikko; Haberl, Helmut (2018)
    The 1.5 °C mitigation challenge for urban areas goes far beyond decarbonizing the cities’ energy supply and needs to enable and incentivize carbon-free everyday living. Reviewing recent literature, we find that dense and mixed urban form enables lower direct emissions from mobility and housing, while income is the major driver of total household carbon footprints; importantly, these effects are not linear. The available urban infrastructure, services and societal arrangements, for example on work, all influence how households use their time, which goods and services they consume in everyday life and their subsequent carbon footprints and potential rebound effects. We conclude that changes in household consumption, time use and urban form are crucial for a 1.5 °C future. We further identify a range of issues for which a time use perspective could open up new avenues for research and policy.
  • Li, T.; Zhang, W.; Zhang, Q.; Lu, Y.; Wang, G.; Niu, Z.; Raivonen, M.; Vesala, T. (2015)
    Natural wetlands are among the most important sources of atmospheric methane and thus important for better understanding the long-term temporal variations in the atmospheric methane concentration. During the last 60 years, wetlands have experienced extensive conversion and impacts from climate warming which might result in complicated temporal and spatial variations in the changes of the wetland methane emissions. In this paper, we present a modeling framework, integrating CH4MODwetland, TOPMODEL, and TEM models, to analyze the temporal and spatial variations in CH4 emissions from natural wetlands (including inland marshes/swamps, coastal wetlands, lakes, and rivers) in China. Our analysis revealed a total increase of 25.5 %, averaging 0.52 gm(-2) per decade, in the national CH4 fluxes from 1950 to 2010, which was mainly induced by climate warming. Larger CH4 flux increases occurred in northeastern, northern, and northwestern China, where there have been higher temperature rises. However, decreases in precipitation due to climate warming offset the increment of CH4 fluxes in these regions. The CH4 fluxes from the wetland on the Qinghai-Tibet Plateau exhibited the lowest CH4 increase (0.17 gm(-2) per decade). Although climate warming has accelerated CH4 fluxes, the total amount of national CH4 emissions decreased by approximately 2.35 Tg (1.91-2.81 Tg), i.e., from 4.50 Tg in the early 1950s to 2.15 Tg in the late 2000s, due to the wetland loss totalling 17.0 million ha. Of this reduction, 0.26 Tg (0.24-0.28 Tg) was derived from lakes and rivers, 0.16 Tg (0.13-0.20 Tg) from coastal wetlands, and 1.92 Tg (1.54-2.33 Tg) from inland wetlands. Spatially, northeastern China contributed the most to the total reduction, with a loss of 1.68 Tg. The wetland CH4 emissions reduced by more than half in most regions in China except for the Qinghai-Tibet Plateau, where the CH4 decrease was only 23.3 %.
  • Saunders, Matthew; Dengel, Sigrid; Kolari, Pasi; Moureaux, Christine; Montagnani, Leonardo; Ceschia, Eric; Altimir, Nuria; Lopez-Ballesteros, Ana; Maranon-Jimenez, Sara; Acosta, Manuel; Klumpp, Katja; Gielen, Bert; Op de Beeck, Maarten; Hortnagl, Lukas; Merbold, Lutz; Osborne, Bruce; Grunwald, Thomas; Arrouays, Dominique; Boukir, Hakima; Saby, Nicolas; Nicolini, Giacomo; Papale, Dario; Jones, Michael (2018)
    There are many factors that influence ecosystem scale carbon, nitrogen and greenhouse gas dynamics, including the inherent heterogeneity of soils and vegetation, anthropogenic management interventions, and biotic and abiotic disturbance events. It is important therefore, to document the characteristics of the soils and vegetation and to accurately report all management activities, and disturbance events to aid the interpretation of collected data, and to determine whether the ecosystem either amplifies or mitigates climate change. This paper outlines the importance of assessing both the spatial and temporal variability of soils and vegetation and to report all management events, the import or export of C or N from the ecosystem, and the occurrence of biotic/abiotic disturbances at ecosystem stations of the Integrated Carbon Observation System, a pan-European research infrastructure.
  • Kortelainen, Pirkko; Larmola, Tuula; Rantakari, Miitta; Juutinen, Sari; Alm, Jukka; Martikainen, Pertti J. (2020)
    Abstract Estimates of regional and global freshwater N2O emissions have remained inaccurate due to scarce data and complexity of the multiple processes driving N2O fluxes the focus predominantly being on summer time measurements from emission hot spots, agricultural streams. Here we present four-season data of N2O concentrations in the water columns of randomly selected boreal lakes covering a large variation in latitude, lake type, area, depth, water chemistry and land use cover. Nitrate was the key driver for N2O dynamics, explaining as much as 78% of the variation of the seasonal mean N2O concentrations across all lakes. Nitrate concentrations varied among seasons being highest in winter and lowest in summer. Of the surface water samples 71% were oversaturated with N2O relative to the atmosphere. Largest oversaturation was measured in winter and lowest in summer stressing the importance to include full year N2O measurements in annual emission estimates. Including winter data resulted in four-fold annual N2O emission estimates compared to summer only measurements. Nutrient rich calcareous and large humic lakes had the highest annual N2O emissions. Our emission estimates for Finnish and boreal lakes are 0.6 Gg and 29 Gg N2O-N y-1, respectively. The Global Warming Potential (GWP) of N2O cannot be neglected in the boreal landscape, being 35% of that of diffusive CH4 emission in Finnish lakes.
  • Candy, Seona; Turner, Graham; Larsen, Kirsten; Wingrove, Kate; Steenkamp, Julia; Friel, Sharon; Lawrence, Mark (2019)
    Dietary change has been suggested as a key strategy to maintain food security, improve health and reduce environmental impacts in the face of rising populations, resource scarcity and climate change impacts, particularly in developed countries. This paper presents findings from a quantitative modelling analysis of food availability and environmental implications of shifting the current average Australian dietary pattern to one of two alternative, healthy dietary patterns, the 'healthy mixed diet', with a mixture of animal and plant foods, and the 'healthy plant-based diet', with only plant foods. Both were constructed in accordance with the Australian Dietary Guideline recommendations, and four sustainability principles: Avoiding over-consumption, reducing intake of discretionary foods, reducing animal products, and reducing food waste. It was assumed that all food was provided domestically where possible, and export of foods only occurred when there was a surplus to domestic requirements. The authors compared the impacts of each dietary pattern on direct food availability, water use, land use, greenhouse gas emissions, fuel and energy use and fertiliser use. The plant-based diet had the best overall environmental and direct food availability outcomes, however had key vulnerabilities in terms of fertiliser and cropping land availability. For the agricultural sector overall, changes in diet had little effect on environmental impact due to the amount and nature of Australian exports, indicating that changes to production methods are also necessary. Likewise, changing diets had little effect on the existing environmentally intensive Australian economy, indicating that changes to other sectors are also necessary.
  • Jauhiainen, J.; Silvennoinen, H.; Hamalainen, R.; Kusin, K.; Limin, S.; Raison, R. J.; Vasander, H. (2012)
  • Denfeld, Blaize A.; Kortelainen, Pirkko; Rantakari, Miitta; Sobek, Sebastian; Weyhenmeyer, Gesa A. (2016)
    Northern lakes are ice-covered for considerable portions of the year, where carbon dioxide (CO2) can accumulate below ice, subsequently leading to high CO2 emissions at ice-melt. Current knowledge on the regional control and variability of below ice partial pressure of carbon dioxide (pCO(2)) is lacking, creating a gap in our understanding of how ice cover dynamics affect the CO2 accumulation below ice and therefore CO2 emissions from inland waters during the ice-melt period. To narrow this gap, we identified the drivers of below ice pCO(2) variation across 506 Swedish and Finnish lakes using water chemistry, lake morphometry, catchment characteristics, lake position, and climate variables. We found that lake depth and trophic status were the most important variables explaining variations in below ice pCO(2) across the 506 lakes(.) Together, lake morphometry and water chemistry explained 53% of the site-to-site variation in below ice pCO(2). Regional climate (including ice cover duration) and latitude only explained 7% of the variation in below ice pCO(2). Thus, our results suggest that on a regional scale a shortening of the ice cover period on lakes may not directly affect the accumulation of CO2 below ice but rather indirectly through increased mobility of nutrients and carbon loading to lakes. Thus, given that climate-induced changes are most evident in northern ecosystems, adequately predicting the consequences of a changing climate on future CO2 emission estimates from northern lakes involves monitoring changes not only to ice cover but also to changes in the trophic status of lakes.
  • Virkkala, Anna-Maria; Virtanen, Tarmo; Lehtonen, Aleksi; Rinne, Janne; Luoto, Miska (2018)
    The Arctic tundra plays an important role in the carbon cycle as it stores 50% of global soil organic carbon reservoirs. The processes (fluxes) regulating these stocks are predicted to change due to direct and indirect effects of climate change. Understanding the current and future carbon balance calls for a summary of the level of knowledge regarding chamber-derived carbon dioxide (CO2) flux studies. Here, we describe progress from recently (2000-2016) published studies of growing-season CO2 flux chamber measurements, namely GPP (gross primary production), ER (ecosystem respiration), and NEE (net ecosystem exchange), in the tundra region. We review the study areas and designs along with the explanatory environmental drivers used. Most of the studies were conducted in Alaska and Fennoscandia, and we stress the need for measuring fluxes in other tundra regions, particularly in more extreme climatic, productivity, and soil conditions. Soil respiration and other greenhouse gas measurements were seldom included in the studies. Although most of the environmental drivers of CO2 fluxes have been relatively well investigated (such as the effect of vegetation type and soil microclimate on fluxes), soil nutrients, other greenhouse gases and disturbance regimes require more research as they might define the future carbon balance. Particular attention should be paid to the effects of shrubification, geomorphology, and other disturbance effects such as fire events, and disease and herbivore outbreaks. An improved conceptual framework and understanding of underlying processes of biosphere-atmosphere CO2 exchange will provide more information on carbon cycling in the tundra.
  • Reckling, Moritz; Bergkvist, Göran; Watson, Christine A.; Stoddard, Frederick L.; Zander, Peter M.; Walker, Robin L.; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann (2016)
    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers.
  • Palviainen, Marjo; Peltomaa, Elina; Laurén, Ari; Kinnunen, Niko; Ojala, Anne; Berninger, Frank; Zhu, Xudan; Pumpanen, Jukka (2022)
    Boreal peatiands are major sources of nitrogen (N), phosphorus (P) and dissolved organic carbon (DOC) to downstream aquatic ecosystems, and forest harvesting generally further increases the loading of DOC and nutrients. Continuous cover forestry (CCF) is proposed to be an environmentally more sustainable management option for peatland forests than conventional even-aged clear-cutting. However, the impacts of CCF on water quality, the biodegradability of DOC and consequent CO2 emissions from inland waters are poorly known. We studied the concentrations of N, P and DOC, the quality of DOC, and the mineralization of DOC to CO2 in ground water and ditch water in clear-cut, partially harvested, i.e. CCF, and uncut drained forests in Finland. Groundwater total N, NH4-N and PO4-P concentrations were significantly lower in CCF and uncut forest than in the clear-cut forest. Groundwater DOC concentrations were often highest in the clear-cut forest, where the water table was doser to the soil surface. Ditch water DOC and N concentrations were lowest next to the clear-cut area. DOC aromaticity in ground water was higher in the uncut forest than in the clear-cut and CCF, whereas ditch water aromaticity did not differ between the treatments. The biodegradation of DOC was studied by incubating water (at 15 degrees C for 24 h) 1, 3, 7 and 21 days after sampling. The results indicated that the majority of the CO2 production took place during the first three days, and CO2 fluxes were considerably higher from the ditch water than from the groundwater. The CO2 emissions were lower in summer than in the other seasons. Ditch water and groundwater CO2 production were generally significantly higher in the clear-cut than in the uncut forest. The results suggest that CCF can decrease the nutrient concentrations as well as CO2 emissions from inland waters compared to conventional clear-cutting. (C) 2021 The Authors. Published by Elsevier B.V.
  • Ottelin, Juudit; Ala-Mantila, Sanna; Heinonen, Jukka; Wiedmann, Thomas; Clarke, Jack; Junnila, Seppo (2019)
    Background: Current climate change mitigation policies, including the Paris Agreement, are based on territorial greenhouse gas (GHG) accounting. This neglects the understanding of GHG emissions embodied in trade. As a solution, consumption-based accounting (CBA) that reveals the lifecycle emissions, including transboundary flows, is gaining support as a complementary information tool. CBA is particularly relevant in cities that tend to outsource a large part of their production-based emissions to their hinterlands. While CBA has so far been used relatively little in practical policymaking, it has been used widely by scientists. Methods and design: The purpose of this systematic review, which covers more than 100 studies, is to reflect the policy implications of consumption-based carbon footprint (CBCF) studies at different spatial scales. The review was conducted by reading through the discussion sections of the reviewed studies and systematically collecting the given policy suggestions for different spatial scales. We used both numerical and qualitative methods to organize and interpret the findings of the review. Review results and discussion: The motivation for the review was to investigate whether the unique consumption perspective of CBA leads to similarly unique policy features. We found that various carbon pricing policies are the most widely supported policy instrument in the relevant literature. However, overall, there is a shortage of discussion on policy instruments, since the policy discussions focus on policy outcomes, such as behavioral change or technological solutions. In addition, some policy recommendations are conflicting. Particularly, urban density and compact city policies are supported by some studies and questioned by others. To clarify the issue, we examined how the results regarding the relationship between urban development and the CBCF vary. The review provides a concise starting point for policymakers and future research by summarizing the timely policy implications.