Browsing by Subject "GROWTH-FACTOR RECEPTOR-3"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Martinez-Corral, Ines; Zhang, Yan; Petkova, Milena; Ortsater, Henrik; Sjoberg, Sofie; Castillo, Sandra D.; Brouillard, Pascal; Libbrecht, Louis; Saur, Dieter; Graupera, Mariona; Alitalo, Kari; Boon, Laurence; Vikkula, Miikka; Mäkinen, Taija (2020)
    Lymphatic malformations (LMs) are debilitating vascular anomalies presenting with large cysts (macrocystic) or lesions that infiltrate tissues (microcystic). Cellular mechanisms underlying LM pathology are poorly understood. Here we show that the somatic PIK3CA(H1047R) mutation, resulting in constitutive activation of the p110 alpha PI3K, underlies both macrocystic and microcystic LMs in human. Using a mouse model of PIK3CA(H1047R)-driven LM, we demonstrate that both types of malformations arise due to lymphatic endothelial cell (LEC)-autonomous defects, with the developmental timing of p110 alpha activation determining the LM subtype. In the postnatal vasculature, PIK3CA(H1047R) promotes LEC migration and lymphatic hypersprouting, leading to microcystic LMs that grow progressively in a vascular endothelial growth factor C (VEGF-C)-dependent manner. Combined inhibition of VEGF-C and the PI3K downstream target mTOR using Rapamycin, but neither treatment alone, promotes regression of lesions. The best therapeutic outcome for LM is thus achieved by co-inhibition of the upstream VEGF-C/VEGFR3 and the downstream PI3K/mTOR pathways. Lymphatic malformation (LM) is a debilitating often incurable vascular disease. Using a mouse model of LM driven by a disease-causative PIK3CA mutation, the authors show that vascular growth is dependent on the upstream lymphangiogenic VEGF-C signalling, permitting effective therapeutic intervention.
  • Kim, Harold; Nguyen, Vicky P. K. H.; Petrova, Tatiana V.; Cruz, Maribelle; Alitalo, Kari; Dumont, Daniel J. (2010)
  • Owall, Louise; Darvann, Tron A.; Hove, Hanne B.; Heliövaara, Arja; Duno, Morten; Kreiborg, Sven; Hermann, Nuno (2021)
    Objective: To quantify soft tissue facial asymmetry (FA) in children with nonsyndromic and Muenke syndrome-associated unicoronal synostosis (NS-UCS and MS-UCS), hypothesizing that MS-UCS presents with significantly larger FA than NS-UCS. Design: Retrospective cohort study. Patients and Methods: Twenty-one children (mean age: 0.6 years; range: 0.1-1.4 years) were included in the study (NS-UCS = 14; MS-UCS = 7). From presurgical computed tomography scans, facial surfaces were constructed for analysis. A landmark guided atlas was deformed to match each patient's surface, obtaining spatially detailed left-right point correspondence. Facial asymmetry was calculated in each surface point across the face, as the length (mm) of an asymmetry vector, with its Cartesian components providing 3 directions. Mean FA was calculated for the full face, and the forehead, eye, nose, cheek, mouth, and chin regions. Results: For the full face, a significant difference of 2.4 mm (P = .001) was calculated between the 2 groups, predominately in the transverse direction (1.5 mm; P < .001). The forehead and chin regions presented with the largest significant difference, 3.5 mm (P = .002) and 3.2 mm (P < .001), respectively; followed by the eye (2.4 mm; P = .004), cheek (2.2 mm; P = .004), nose (1.7 mm; P = .001), and mouth (1.4 mm; P = .009) regions. The transverse direction presented with the largest significant difference in the forehead, chin, mouth, and nose regions, the sagittal direction in the cheek region, and the vertical direction in the eye region. Conclusions: Muenke syndrome-associated unicoronal synostosis presented with significantly larger FA in all regions compared to NS-UCS. The largest significant differences were found in the forehead and chin regions, predominantly in the transverse direction.
  • Karaman, Sinem; Hollmen, Maija; Yoon, Sun-Young; Alkan, H. Furkan; Alitalo, Kari; Wolfrum, Christian; Detmar, Michael (2016)
    Obesity comprises great risks for human health, contributing to the development of other diseases such as metabolic syndrome, type 2 diabetes and cardiovascular disease. Previously, obese patients were found to have elevated serum levels of VEGF-C, which correlated with worsening of lipid parameters. We recently identified that neutralization of VEGF-C and -D in the subcutaneous adipose tissue during the development of obesity improves metabolic parameters and insulin sensitivity in mice. To test the hypothesis that VEGF-C plays a role in the promotion of the metabolic disease, we used K14-VEGF-C mice that overexpress human VEGF-C under control of the keratin-14 promoter in the skin and monitored metabolic parameters over time. K14-VEGF-C mice had high levels of VEGF-C in the subcutaneous adipose tissue and gained more weight than wildtype littermates, became insulin resistant and had increased ectopic lipid accumulation at 20 weeks of age on regular mouse chow. The metabolic differences persisted under high-fat diet induced obesity. These results indicate that elevated VEGF-C levels contribute to metabolic deterioration and the development of insulin resistance, and that blockade of VEGF-C in obesity represents a suitable approach to alleviate the development of insulin resistance.