Browsing by Subject "Giant molecular clouds"

Sort by: Order: Results:

Now showing items 1-1 of 1
  • Tatematsu, Ken'ichi; Liu, Tie; Kim, Gwanjeong; Yi, Hee-Weon; Lee, Jeong-Eun; Hirano, Naomi; Liu, Sheng-Yuan; Ohashi, Satoshi; Sanhueza, Patricio; Di Francesco, James; Evans, Neal J.; Fuller, Gary A.; Kandori, Ryo; Choi, Minho; Kang, Miju; Feng, Siyi; Hirota, Tomoya; Sakai, Takeshi; Lu, Xing; Lu'o'ng, Quang Nguyen; Thompson, Mark A.; Wu, Yuefang; Li, Di; Kim, Kee-Tae; Wang, Ke; Ristorcelli, Isabelle; Juvela, Mika; Toth, L. Viktor (2020)
    We mapped two molecular cloud cores in the Orion A cloud with the 7 m Array of the Atacama Compact Array (ACA) of the Atacama Large Millimeter/submillimeterArray (ALMA) and with the Nobeyama 45 m radio telescope. These cores have bright N2D+ emission in single-pointing observations with the Nobeyama 45 m radio telescope, have a relatively high deuterium fraction, and are thought to be close to the onset of star formation. One is a star-forming core, and the other is starless. These cores are located along filaments observed in N2H+ and show narrow line widths of 0.41 km s(-1) and 0.45 km s(-1) in N2D+, respectively, with the Nobeyama 45 m telescope. Both cores were detected with the ALMA ACA 7 m Array in the continuum and molecular lines at Band 6. The starless core G211 shows a clumpy structure with several sub-cores, which in turn show chemical differences. Also, the sub-cores in G211 have internal motions that are almost purely thermal. The starless sub-core G211D, in particular, shows a hint of the inverse P Cygni profile, suggesting infall motion. The star-forming core G210 shows an interesting spatial feature of two N2D+ peaks of similar intensity and radial velocity located symmetrically with respect to the single dust continuum peak. One interpretation is that the two N2D+ peaks represent an edge-on pseudo-disk. The CO outflow lobes, however, are not directed perpendicular to the line connecting both N2D+ peaks.