Sort by: Order: Results:

Now showing items 1-20 of 20
  • Pfeifer, Marion; Lefebvre, Veronique; Gardner, Toby A.; Arroyo-Rodriguez, Victor; Baeten, Lander; Banks-Leite, Cristina; Barlow, Jos; Betts, Matthew G.; Brunet, Joerg; Cerezo, Alexis; Cisneros, Laura M.; Collard, Stuart; D'Cruze, Neil; da Silva Motta, Catarina; Duguay, Stephanie; Eggermont, Hilde; Eigenbrod, Felix; Hadley, Adam S.; Hanson, Thor R.; Hawes, Joseph E.; Scalley, Tamara Heartsill; Klingbeil, Brian T.; Kolb, Annette; Kormann, Urs; Kumar, Sunil; Lachat, Thibault; Lakeman Fraser, Poppy; Lantschner, Victoria; Laurance, William F.; Leal, Inara R.; Lens, Luc; Marsh, Charles J.; Medina-Rangel, Guido F.; Melles, Stephanie; Mezger, Dirk; Oldekop, Johan A.; Overal, William L.; Owen, Charlotte; Peres, Carlos A.; Phalan, Ben; Pidgeon, Anna M.; Pilia, Oriana; Possingham, Hugh P.; Possingham, Max L.; Raheem, Dinarzarde C.; Ribeiro, Danilo B.; Ribeiro Neto, Jose D.; Robinson, W. Douglas; Robinson, Richard; Rytwinski, Trina; Scherber, Christoph; Slade, Eleanor M.; Somarriba, Eduardo; Stouffer, Philip C.; Struebig, Matthew J.; Tylianakis, Jason M.; Tscharntke, Teja; Tyre, Andrew J.; Urbina Cardona, Jose N.; Vasconcelos, Heraldo L.; Wearn, Oliver; Wells, Konstans; Willig, Michael R.; Wood, Eric; Young, Richard P.; Bradley, Andrew V.; Ewers, Robert M. (2014)
  • Lemopoulos, Alexandre; Prokkola, Jenni M.; Uusi-Heikkilä, Silva; Vasemägi, Anti; Huusko, Ari; Hyvarinen, Pekka; Koljonen, Marja-Liisa; Koskiniemi, Jarmo; Vainikka, Anssi (2019)
    The conservation and management of endangered species requires information on their genetic diversity, relatedness and population structure. The main genetic markers applied for these questions are microsatellites and single nucleotide polymorphisms (SNPs), the latter of which remain the more resource demanding approach in most cases. Here, we compare the performance of two approaches, SNPs obtained by restriction-site-associated DNA sequencing (RADseq) and 16 DNA microsatellite loci, for estimating genetic diversity, relatedness and genetic differentiation of three, small, geographically close wild brown trout (Salmo trutta) populations and a regionally used hatchery strain. The genetic differentiation, quantified as F-ST, was similar when measured using 16 microsatellites and 4,876 SNPs. Based on both marker types, each brown trout population represented a distinct gene pool with a low level of interbreeding. Analysis of SNPs identified half- and full-siblings with a higher probability than the analysis based on microsatellites, and SNPs outperformed microsatellites in estimating individual-level multilocus heterozygosity. Overall, the results indicated that moderately polymorphic microsatellites and SNPs from RADseq agreed on estimates of population genetic structure in moderately diverged, small populations, but RADseq outperformed microsatellites for applications that required individual-level genotype information, such as quantifying relatedness and individual-level heterozygosity. The results can be applied to other small populations with low or moderate levels of genetic diversity.
  • Hanski, Ilkka; Schulz, Torsti; Wong, Swee Chong; Ahola, Virpi; Ruokolainen, Annukka; Ojanen, Sami P. (2017)
    Ecologists are challenged to construct models of the biological consequences of habitat loss and fragmentation. Here, we use a metapopulation model to predict the distribution of the Glanville fritillary butterfly during 22 years across a large heterogeneous landscape with 4,415 small dry meadows. The majority (74%) of the 125 networks into which the meadows were clustered are below the extinction threshold for long-term persistence. Among the 33 networks above the threshold, spatial configuration and habitat quality rather than the pooled habitat area predict metapopulation size and persistence, but additionally allelic variation in a SNP in the gene Phosphoglucose isomerase (Pgi) explains 30% of variation in metapopulation size. The Pgi genotypes are associated with dispersal rate and hence with colonizations and extinctions. Associations between Pgi genotypes, population turnover and metapopulation size reflect eco-evolutionary dynamics, which may be a common feature in species inhabiting patch networks with unstable local dynamics.
  • Saine, Sonja; Aakala, Tuomas; Purhonen, Jenna; Launis, Annina; Tuovila, Hanna; Kosonen, Timo; Halme, Panu (2018)
    Human-induced fragmentation affects forest continuity, i.e. availability of a suitable habitat for the target species over a time period. The dependence of wood-inhabiting fungi on landscape level continuity has been well demonstrated, but the importance of local continuity has remained controversial. In this study, we explored the effects of local forest continuity (microhabitat and stand level) on the diversity of wood-inhabiting fungi on standing dead trunks of Scots pine (Paws sylvestris L.). We studied species richness and community composition of decomposers and Micarea lichens on 70 trunks in 14 forests in central Finland that differed in their state of continuity. We used dendrochronological methods to assess the detailed history of each study trunk, i.e. the microhabitat continuity. The stand continuity was estimated as dead wood diversity and past management intensity (number of stumps). We recorded 107 species (91 decomposers, 16 Micarea lichens), with a total of 510 occurrences. Using generalized linear mixed models, we found that none of the variables explained decomposer species richness, but that Micarea species richness was positively dependent on the time since tree death. Dead wood diversity was the most important variable determining the composition of decomposer communities. For Micarea lichens, the community composition was best explained by the combined effect of years from death, site and dead wood diversity. However, these effects were rather tentative. The results are in line with those of previous studies suggesting the restricted significance of local forest continuity for wood-inhabiting fungi. However, standing dead pines that have been available continuously over long periods seem to be important for species-rich communities of Micarea lichens. Rare specialists (e.g. on veteran trees) may be more sensitive to local continuity, and should be at the center of future research.
  • Marjakangas, Emma-Liina; Abrego, Nerea; Grøtan, Vidar; de Lima, Renato A. F.; Bello, Carolina; Bovendorp, Ricardo S.; Culot, Laurence; Hasui, Érica; Lima, Fernando; Muylaert, Renata Lara; Niebuhr, Bernardo Brandão; Oliveira, Alexandre A.; Pereira, Lucas Augusto; Prado, Paulo I.; Stevens, Richard D.; Vancine, Maurício Humberto; Ribeiro, Milton Cezar; Galetti, Mauro; Ovaskainen, Otso (2020)
    Abstract Aim Forest fragmentation is among the principal causes of global biodiversity loss, yet how it affects mutualistic interactions between plants and animals at large spatial scale is poorly understood. In particular, tropical forest regeneration depends on animal-mediated seed dispersal, but the seed-dispersing animals face rapid decline due to forest fragmentation and defaunation. Here, we assess how fragmentation influences the pairwise interactions between 407 seed disperser and 1,424 tree species in a highly fragmented biodiversity hotspot. Location Atlantic Forest, South America. Methods We predicted interaction networks in 912 sites covering the entire biome by combining verified interaction data with co-occurrence probabilities obtained from a spatially explicit joint species distribution model. We identified keystone seed dispersers by computing a species-specific keystone index and by selecting those species belonging to the top 5% quantile. Results We show that forest fragmentation affects seed dispersal interactions negatively, and the decreased area of functionally connected forest, rather than increased edge effects, is the main driver behind the loss of interactions. Both the seed disperser availability for the local tree communities and in particular the proportion of interactions provided by keystone seed dispersers decline with increasing degree of fragmentation. Importantly, just 21 keystone species provided >40% of all interactions. The numbers of interactions provided by keystone and non-keystone species, however, were equally negatively affected by fragmentation, suggesting that seed dispersal interactions may not be rewired under strong fragmentation effects. Conclusions We highlight the importance of understanding the fragmentation-induced compositional shifts in seed disperser communities as they may lead to lagged and multiplicative effects on tree communities. Our results illustrate the utility of model-based prediction of interaction networks as well as model-based identification of keystone species as a tool for prioritizing conservation efforts. Similar modelling approaches could be applied to other threatened ecosystems and interaction types globally.
  • Elshibli, Sakina; Korpelainen, Helena (2018)
    Background: Medemia argun is a rare wild palm tree species. Its global existence is assumed to include the main population of about 1000 trees in the Nubian Desert of Sudan and some scattered individuals in southern Egypt. The species had previously been assumed to be extinct, but then reported to be extant about 20 years ago. Aims: To assess genetic variation and explore population genetic structure of M. argun, through development and analysis of microsatellite markers. Methods: The genome sequence mining approach was applied in order to identify microsatellites in the chloroplast genome of Bismarckia nobilis, a species closely related of M. argun. A set of 49 markers were designed, and their characteristics are now provided. Seven chloroplast DNA markers were developed for use in the genetic characterisation of this threatened species. Results: Five markers were found polymorphic in M. argun, which enabled the assessment of the genetic diversity of the species. Significant genetic differentiation was observed among generations and collection sites, accompanied by low genetic variation. The seven markers developed were polymorphic among the wild relatives Hyphaene thebaica and Borassus aethiopum. Conclusions: This is the first study to report molecular markers for M. argun. Our results suggest that the genetic consequences of population fragmentation in M. argun are beginning to be evident.
  • Malkamäki, Arttu; Toppinen, Anne; Kanninen, Markku (2016)
  • Fountain, Toby; Husby, Arild; Nonaka, Etsuko; DiLeo, Michelle; Korhonen, Janne H.; Rastas, Pasi; Schulz, Torsti Michael; Saastamoinen, Marjo Anna Kaarina; Hanski, Ilkka Aulis (2018)
    Dispersal is important for determining both species ecological processes, such as population viability, and its evolutionary processes, like gene flow and local adaptation. Yet obtaining accurate estimates in the wild through direct observation can be challenging or even impossible, particularly over large spatial and temporal scales. Genotyping many individuals from wild populations can provide detailed inferences about dispersal. We therefore utilized genomewide marker data to estimate dispersal in the classic metapopulation of the Glanville fritillary butterfly (Melitaea cinxia L.), in the Aland Islands in SW Finland. This is an ideal system to test the effectiveness of this approach due to the wealth of information already available covering dispersal across small spatial and temporal scales, but lack of information at larger spatial and temporal scales. We sampled three larvae per larval family group from 3732 groups over a six-year period and genotyped for 272 SNPs across the genome. We used this empirical data set to reconstruct cases where full-sibs were detected in different local populations to infer female effective dispersal distance, that is, dispersal events directly contributing to gene flow. On average this was one kilometre, closely matching previous dispersal estimates made using direct observation. To evaluate our power to detect full-sib families, we performed forward simulations using an individual-based model constructed and parameterized for the Glanville fritillary metapopulation. Using these simulations, 100% of predicted full-sibs were correct and over 98% of all true full-sib pairs were detected. We therefore demonstrate that even in a highly dynamic system with a relatively small number of markers, we can accurately reconstruct full-sib families and for the first time make inferences on female effective dispersal. This highlights the utility of this approach in systems where it has previously been impossible to obtain accurate estimates of dispersal over both ecological and evolutionary scales.
  • Cardoso, Pedro; Rigal, Francois; Fattorini, Simone; Terzopoulou, Sofia; Borges, Paulo A. V. (2013)
    Successful conservation plans are conditioned by our ability to detect anthropogenic change in space and time and various statistical analyses have been developed to handle this critical issue. The main objective of this paper is to illustrate a new approach for spatial analysis in conservation biology. Here, we propose a two-step protocol. First, we introduce a new disturbance metric which provides a continuous measure of disturbance for any focal communities on the basis of the surrounding landscape matrix. Second, we use this new gradient to estimate species and community disturbance thresholds by implementing a recently developed method called Threshold Indicator Taxa ANalysis (TITAN). TITAN detects changes in species distributions along environmental gradients using indicators species analysis and assesses synchrony among species change points as evidence for community thresholds. We demonstrate our method with soil arthropod assemblages along a disturbance gradient in Terceira Island (Azores, Portugal). We show that our new disturbance metric realistically reflects disturbance patterns, especially in buffer zones (ecotones) between land use categories. By estimating species disturbance thresholds with TITAN along the disturbance gradient in Terceira, we show that species significantly associated with low disturbance differ from those associated with high disturbance in their biogeographical origin (endemics, non-endemic natives and exotics) and taxonomy (order). Finally, we suggest that mapping the disturbance community thresholds may reveal areas of primary interest for conservation, since these may host indigenous species sensitive to high disturbance levels. This new framework may be useful when: (1) both local and regional processes are to be reflected on single disturbance measures; (2) these are better quantified in a continuous gradient; (3) mapping disturbance of large regions using fine scales is necessary; (4) indicator species for disturbance are searched for and; (5) community thresholds are useful to understand the global dynamics of habitats.
  • du Toit, Marie J.; Kotze, D. Johan; Cilliers, Sarel S. (2016)
    The history of the landscape directly affects biotic assemblages, resulting in time lags in species response to disturbances. In highly fragmented environments, this phenomenon often causes extinction debts. However, few studies have been carried out in urban settings. To determine if there are time lags in the response of temperate natural grasslands to urbanization. Does it differ for indigenous species and for species indicative of disturbance and between woody and open grasslands? Do these time lags change over time? What are the potential landscape factors driving these changes? What are the corresponding vegetation changes? In 1995 and 2012 vegetation sampling was carried out in 43 urban grassland sites. We calculated six urbanization and landscape measures in a 500 m buffer area surrounding each site for 1938, 1961, 1970, 1994, 1999, 2006, and 2010. We used generalized linear models and model selection to determine which time period best predicted the contemporary species richness patterns. Woody grasslands showed time lags of 20-40 years. Contemporary open grassland communities were, generally, associated with more contemporary landscapes. Altitude and road network density of natural areas were the most frequent predictors of species richness. The importance of the predictors changed between the different models. Species richness, specifically, indigenous herbaceous species, declined from 1995 to 2012. The history of urbanization affects contemporary urban vegetation assemblages. This indicates potential extinction debts, which have important consequences for biodiversity conservation planning and sustainable future scenarios.
  • DiLeo, Michelle F.; Husby, Arild; Saastamoinen, Marjo (2018)
    There is now clear evidence that species across a broad range of taxa harbor extensive heritable variation in dispersal. While studies suggest that this variation can facilitate demographic outcomes such as range expansion and invasions, few have considered the consequences of intraspecific variation in dispersal for the maintenance and distribution of genetic variation across fragmented landscapes. Here, we examine how landscape characteristics and individual variation in dispersal combine to predict genetic structure using genomic and spatial data from the Glanville fritillary butterfly. We used linear and latent factor mixed models to identify the landscape features that best predict spatial sorting of alleles in the dispersal-related gene phosphoglucose isomerase (Pgi). We next used structural equation modeling to test if variation in Pgi mediated gene flow as measured by F-st at putatively neutral loci. In a year when the population was recovering following a large decline, individuals with a genotype associated with greater dispersal ability were found at significantly higher frequencies in populations isolated by water and forest, and these populations showed lower levels of genetic differentiation at neutral loci. These relationships disappeared in the next year when metapopulation density was high, suggesting that the effects of individual variation are context dependent. Together our results highlight that (1) more complex aspects of landscape structure beyond just the configuration of habitat can be important for maintaining spatial variation in dispersal traits and (2) that individual variation in dispersal plays a key role in maintaining genetic variation across fragmented landscapes.
  • Riutta, Terhi; Clack, Henry; Crockatt, Martha; Slade, Eleanor M. (2016)
    Although studies on edge effects on species richness and abundance are numerous, the responses of ecosystem processes to these effects have received considerably less attention. How ecosystem processes respond to edge effects is particularly important in temperate forests, where small fragments and edge habitats form a considerable proportion of the total forest area. Soil fauna are key contributors to decomposition and soil biogeochemical cycling processes. Using the bait lamina technique, we quantified soil fauna feeding activity, and its dependence on soil moisture and distance to the edge in a broad-leaved forest in Southern England. Feeding activity was 40% lower at the forest edge than in the interior, and the depth of edge influence was approximately 75 m. A watering treatment showed that moisture limitation was the main driver of the reduced feeding activity at the edge. In England, only 33% of the forest area is greater than 75 m from the edge. Therefore, assuming that the results from this single-site study are representative for the landscape, it implies that only one- third of the forest area in England supports activity levels typical for the forest core, and that edge effects reduce the mean feeding activity across the landscape by 17% (with lower and upper 90% confidence intervals of 1.3 and 23%, respectively). Changing climatic conditions, such as summer droughts may exacerbate such effects as edges lose water faster than the forest interior. The results highlight the importance of taking edge effects into account in ecological studies and forest management planning in highly fragmented landscapes.
  • Duplouy, Anne; Nair, Abhilash; Nyman, Toshka; van Nouhuys, Saskya (2021)
    Population bottlenecks associated with founder events strongly impact the establishment and genetic makeup of populations. In addition to their genotype, founding individuals also bring along parasites, as well as symbionts that can manipulate the phenotype of their host, affecting the host population establishment, dynamics and evolution. Thus, to understand introduction, invasion, and spread, we should identify the roles played by accompanying symbionts. In 1991, the parasitoid wasp, Hyposoter horticola, and its associated hyperparasitoid were accidentally introduced from the main angstrom land islands, Finland, to an isolated island in the archipelago, along with their host, the Glanville fritillary butterfly. Though the receiving island was unoccupied, the butterfly was present on some of the small islands in the vicinity. The three introduced species have persisted locally ever since. A strain of the endosymbiotic bacterium Wolbachia has an intermediate prevalence in the parasitoid H. horticola across the main angstrom land population. The infection increases its susceptibility of to hyperparasitism. We investigated the establishment and spread of the parasitoid, along with patterns of prevalence of its symbiont using 323 specimens collected between 1992 and 2013, from five localities across angstrom land, including the source and introduced populations. Using 14 microsatellites and one mitochondrial marker, we suggest that the relatively diverse founding population and occasional migration between islands might have facilitated the persistence of all isolated populations, despite multiple local population crashes. We also show that where the hyperparasitoid is absent, and thus selection against infected wasp genotypes is relaxed, there is near-fixation of Wolbachia.
  • Rodil, Iván F.; Lohrer, Andrew M.; Attard, Karl M.; Hewitt, Judi E.; Thrush, Simon F.; Norkko, Alf (2021)
    Similar to other coastal biogenic habitats (e.g. tidal marshes, kelp forests, mangroves and coral reefs), a key function of seagrass meadows is the enhancement of biodiversity. Variability at multiple spatial scales is a driver of biodiversity, but our understanding of the response of macrofauna communities to variability of seagrass meadows is limited. We examined the macrofauna community structure (abundance and biomass) and diversity patterns (alpha- and beta-diversity) across a seascape gradient of eleven seagrass meadows differing in the number, composition and density of plant species. The variability of the macrobenthic communities was regulated by a combination of sedimentary (mainly for the infauna) and macrophyte (mainly for the epifauna) predictors. We demonstrate that the natural occurrence of drifting algae trapped in the aboveground complexity of the meadows benefits seagrass macrofauna. Seagrass-associated macrofauna showed a clear increase in abundance and alpha-diversity metrics with increasing habitat complexity attributes (i.e. shoot density, plant biomass and canopy height). Furthermore, partitioning of beta-diversity (i.e. the variation of species composition between sites) implied the replacement of some species by others between sites (i.e. spatial turnover) instead of a process of species loss (or gain) from site to site (i.e. nestedness). Therefore, the enhancement of macrofauna diversity across an increasing gradient of seagrass complexity, and the dominance of the turnover component suggest that devoting conservation efforts on many different types of meadows, including the less diverse, should be a priority for coastal habitat-management.
  • Garcia, Raquel A.; Araujo, Miguel B.; Burgess, Neil D.; Foden, Wendy B.; Gutsche, Alexander; Rahbek, Carsten; Cabeza, Mar (2014)
  • Ovaskainen, Otso; Somervuo, Panu; Finkelshtein, Dmitri (2021)
    In ecology, one of the most fundamental questions relates to the persistence of populations, or conversely to the probability of their extinction. Deriving extinction thresholds and characterizing other critical phenomena in spatial and stochastic models is highly challenging, with few mathematically rigorous results being available for discrete-space models such as the contact process. For continuous-space models of interacting agents, to our knowledge no analytical results are available concerning critical phenomena, even if continuous-space models can arguably be considered to be more natural descriptions of many ecological systems than lattice-based models. Here we present both mathematical and simulation-based methods for deriving extinction thresholds and other critical phenomena in a broad class of agent-based models called spatiotemporal point processes. The mathematical methods are based on a perturbation expansion around the so-called mean-field model, which is obtained at the limit of large-scale interactions. The simulation methods are based on examining how the mean time to extinction scales with the domain size used in the simulation. By utilizing a constrained Gaussian process fitted to the simulated data, the critical parameter value can be identified by asking when the scaling between logarithms of the time to extinction and the domain size switches from sublinear to superlinear. As a case study, we derive the extinction threshold for the spatial and stochastic logistic model. The mathematical technique yields rigorous approximation of the extinction threshold at the limit of long-ranged interactions. The asymptotic validity of the approximation is illustrated by comparing it to simulation experiments. In particular, we show that species persistence is facilitated by either short or long spatial scale of the competition kernel, whereas an intermediate scale makes the species vulnerable to extinction. Both the mathematical and simulation methods developed here are of very general nature, and thus we expect them to be valuable for predicting many kinds of critical phenomena in continuous-space stochastic models of interacting agents, and thus to be of broad interest for research in theoretical ecology and evolutionary biology.
  • Wang, Shaopeng; Brose, Ulrich; van Nouhuys, Saskya; Holt, Robert D.; Loreau, Michel (2021)
    Metapopulation capacity provides an analytic tool to quantify the impact of landscape configuration on metapopulation persistence, which has proven powerful in biological conservation. Yet surprisingly few efforts have been made to apply this approach to multispecies systems. Here, we extend metapopulation capacity theory to predict the persistence of trophically interacting species. Our results demonstrate that metapopulation capacity could be used to predict the persistence of trophic systems such as prey- predator pairs and food chains in fragmented landscapes. In particular, we derive explicit predictions for food chain length as a function of metapopulation capacity, top-down control, and population dynamical parameters. Under certain assumptions, we show that the fraction of empty patches for the basal species provides a useful indicator to predict the length of food chains that a fragmented landscape can support and confirm this prediction for a host-parasitoid interaction. We further show that the impact of habitat changes on biodiversity can be predicted from changes in metapopulation capacity or approximately by changes in the fraction of empty patches. Our study provides an important step toward a spatially explicit theory of trophic metacommunities and a useful tool for predicting their responses to habitat changes.
  • Stam, Åsa Charlotta Sofia; Anttila, Jani; Pellikka, Petri Kauko Emil; Rikkinen, Jouko Kalevi (2020)
    We studied growth of three epiphytic bryophyte species in Kenya to determine their sensitivity to environmental changes. Bryophytes collected from a cool and moist upper montane forest were used to prepare 180 pendant transplants. Sixty transplants were placed in their natural habitat while 120 were transferred to two warmer and drier sites in a lower montane forest. After one year, all the transplants recovered from the lower mon-tane forest were transferred back to the upper montane forest. In the third year, half of the remaining transplants were left in their location, and half transferred to an eucalyptus plantation forest, both in the upper montane zone. After each year subsamples were taken from each group for growth measurements. The epiphytic bryophytes demonstrated considerable resilience during the experiment. They clearly suffered from the warm and dry conditions of the lower montane forest, but quickly recovered and then exhibited growth rates comparable to those of the controls. In the third year there was no statistical difference in the growth of transplants in their natural location and in the eucalyptus plantation. This indicates that the lack of suitable substrate is the primary factor limiting bryophyte biomass in plantation forests rather than unsuitable microclimate per se.
  • Nonaka, Etsuko; Kaitala, Veijo (2020)
    Many parasitoids have single-locus complementary sex determination (sl-CSD), which produces sterile or inviable males when homozygous at the sex determining locus. A previous study theoretically showed that small populations have elevated risks of extinction due to the positive feedback between inbreeding and small population size, referred to as the diploid male vortex. A few modeling studies have suggested that the diploid male vortex may not be as common because balancing selection at sex determining loci tends to maintain high allelic diversity in spatially structured populations. However, the generality of the conclusion is yet uncertain, as they were drawn either from models developed for particular systems or from a general-purpose competition model. To attest the conclusion, we study several well-studied host-parasitoid models that incorporate functional response specifying the number of attacked hosts given a host density and derive the conditions for a diploid male vortex in a single population. Then, we develop spatially structured individual-based versions of the models to include female behavior, diploid male fertility, and temporal fluctuations. The results show that producing a handful of successful offspring per female parasitoid could enable parasitoid persistence when a typical number of CSD alleles are present. The effect of functional response depends on the levels of fluctuations in host abundance, and inviable or partially fertile diploid males and a small increase in dispersal can alleviate the risk of a diploid male vortex. Our work supports the generality of effective genetic rescue in spatially connected parasitoid populations with sl-CSD. However, under more variable climate, the efficacy of the CSD mechanism may substantially decline.
  • Alsaffar, Z.; Pearman, J. K.; Curdia, J.; Ellis, J.; Calleja, M. Ll; Ruiz-Compean, P.; Roth, F.; Villalobos, R.; Jones, B. H.; Moran, X. A. G.; Carvalho, S. (2020)
    We investigated the influence of seagrass canopies on the benthic biodiversity of bacteria and macroinvertebrates in a Red Sea tropical lagoon. Changes in abundance, number of taxa and assemblage structure were analyzed in response to seagrass densities (low, SLD; high, SHD; seagrasses with algae, SA), and compared with unvegetated sediments. Biological and environmental variables were examined in these four habitats (hereafter called treatments), both in the underlaying sediments and overlaying waters, at three randomly picked locations in March 2017. Differences between treatments were more apparent in the benthic habitat than in the overlaying waters. The presence of vegetation (more than its cover) and changes in sedimentary features (grain size and metals) at local scales influenced the observed biological patterns, particularly for macroinvertebrates. Of note, the highest percentage of exclusive macroinvertebrate taxa (18% of the gamma diversity) was observed in the SHD treatment peaking in the SA for bacteria. Benthic macroinvertebrates and bacteria shared a generally low number of taxa across treatments and locations; approximately, 25% of the gamma diversity was shared among all treatments and locations for macrofauna, dropping to 11% for bacteria. Given the low overlap in the species distribution across the lagoon, sustaining the connectivity among heterogeneous soft sediment habitats appears to be essential for maintaining regional biodiversity. This study addresses a current scientific gap related to the relative contributions of vegetated and unvegetated habitats to biodiversity in tropical regions.