Browsing by Subject "HEIGHT GROWTH"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Calleja-Rodriguez, Ainhoa; Li, Zitong; Hallingbäck, Henrik R.; Sillanpää, Mikko J.; Wu, Harry X.; Abrahamsson, Sara; Garcia-Gil, Maria Rosario (2019)
    In forest tree breeding, family-based Quantitative Trait Loci (QTL) studies are valuable as methods to dissect the complexity of a trait and as a source of candidate genes. In the field of conifer research, our study contributes to the evaluation of phenotypic and predicted breeding values for the identification of QTL linked to complex traits in a three-generation pedigree population in Scots pine (Pinus sylvestris L.). A total of 11 470 open pollinated F-2-progeny trees established at three different locations, were measured for growth and adaptive traits. Breeding values were predicted for their 360 mothers, originating from a single cross of two grand-parents. A multilevel LASSO association analysis was conducted to detect QTL using genotypes of the mothers with the corresponding phenotypes and Estimated Breeding Values (EBV). Different levels of genotype-by-environment (G x E) effects among sites at different years, were detected for survival and height. Moderate-to-low narrow sense heritabilities and EBV accuracies were found for all traits and all sites. We identified 18 AFLPs and 12 SNPs to be associated with QTL for one or more traits. 62 QTL were significant with percentages of variance explained ranging from 1.7 to 18.9%. In those cases where the same marker was associated to a phenotypic or an ebvQTL, the ebvQTL always explained higher proportion of the variance, maybe due to the more accurate nature of Estimated Breeding Values (EBV). Two SNP-QTL showed pleiotropic effects for traits related with hardiness, seed, cone and flower production. Furthermore, we detected several QTL with significant effects across multiple ages, which could be considered as strong candidate loci for early selection. The lack of reproducibility of some QTL detected across sites may be due to environmental heterogeneity reflected by the genotype- and QTL-by-environment effects. (C) 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
  • Tian, Xianglin; Sun, Shuaichao; Mola-Yudego, Blas; Cao, Tianjian (2020)
    Key message We propose a methodology to develop a preliminary version of a growth model when tree-level growth data are unavailable. This modelling approach predicts individual tree growth using only one-time observations from temporary plots. A virtual dataset was generated by linking the whole stand and diameter distribution models. The individual tree model was parameterized using Bayesian calibration and a likelihood of diameter distributions. Context A key component of tree-level growth and yield prediction is the diameter increment model that requires at least two different points in time with individual tree measurements. In some cases, however, sufficient inventory data from remeasured permanent or semitemporary plots are unavailable or difficult to access. Aims The purpose of this study was to propose a three-stage approach for modelling individual tree diameter growth based on temporary plots. Methods The first stage is to predict stand dynamics at 5-year intervals based on stand-level resource inventory data. The second stage is to simulate diameter distribution at 5-year intervals using a Weibull function based on tree-level research inventory data. The final stage is to improve the reliability of individual tree diameter estimates by updating parameters with Bayesian calibration based on a likelihood of diameter distributions. Results The virtual-data-based diameter increment model provided logical patterns and reliable performances in both tree- and stand-level predictions. Although it underestimated the growth of suppressed trees compared with tree cores and remeasurements, this bias was negligible when aggregating tree-level simulations into stand-level growth predictions. Conclusion Our virtual-data-based modelling approach only requires one-time observations from temporary plots, but provide reliable predictions of stand- and tree-level growth when validated with tree cores and whole-stand models. This preliminary model can be updated in a Bayesian framework when growth data from tree cores or remeasurements were obtained.