Browsing by Subject "HELICITY"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Lumme, E.; Pomoell, J.; Price, D. J.; Kilpua, E. K. J.; Kazachenko, M. D.; Fisher, G. H.; Welsch, B. T. (2022)
    Context. Data-driven, time-dependent magnetofrictional modeling has proved to be an efficient tool for studying the pre-eruptive build-up of energy for solar eruptions, and sometimes even the ejection of coronal flux ropes during eruptions. However, previous modeling works have illustrated the sensitivity of the results on the data-driven boundary condition, as well as the difficulty in modeling the ejections with proper time scales. Aims. We aim to study the pre- and post-eruptive evolution of a weak coronal mass ejection producing eruption at the periphery of isolated NOAA active region (AR) 11726 using a data-driven, time-dependent magnetofrictional simulation, and aim to illustrate the strengths and weaknesses of our simulation approach. Methods. We used state-of-the-art data processing and electric field inversion methods to provide the data-driven boundary condition for the simulation. We analyzed the field-line evolution, magnetic connectivity, twist, as well as the energy and helicity budgets in the simulation to study the pre- and post-eruptive magnetic field evolution of the observed eruption from AR11726. Results. We find the simulation to produce a pre-eruptive flux rope system consistent with several features in the extreme ultraviolet and X-ray observations of the eruption, but the simulation largely fails to reproduce the ejection of the flux rope. We find the flux rope formation to be likely driven by the photospheric vorticity at one of the footpoints, although reconnection at a coronal null-point may also feed poloidal flux to the flux rope. The accurate determination of the non-inductive (curl-free) component of the photospheric electric field boundary condition is found to be essential for producing the flux rope in the simulation. Conclusions. Our results illustrate the applicability of the data-driven, time-dependent magnetofrictional simulations in modeling the pre-eruptive evolution and formation process of a flux rope system, but they indicate that the modeling output becomes problematic for the post-eruptive times. For the studied event, the flux rope also constituted only a small part of the related active region.
  • Palmerio, E.; Kilpua, E. K. J.; James, A. W.; Green, L. M.; Pomoell, J.; Isavnin, A.; Valori, G. (2017)
    A key aim in space weather research is to be able to use remote-sensing observations of the solar atmosphere to extend the lead time of predicting the geoeffectiveness of a coronal mass ejection (CME). In order to achieve this, the magnetic structure of the CME as it leaves the Sun must be known. In this article we address this issue by developing a method to determine the intrinsic flux rope type of a CME solely from solar disk observations. We use several well-known proxies for the magnetic helicity sign, the axis orientation, and the axial magnetic field direction to predict the magnetic structure of the interplanetary flux rope. We present two case studies: the 2 June 2011 and the 14 June 2012 CMEs. Both of these events erupted from an active region, and despite having clear in situ counterparts, their eruption characteristics were relatively complex. The first event was associated with an active region filament that erupted in two stages, while for the other event the eruption originated from a relatively high coronal altitude and the source region did not feature a filament. Our magnetic helicity sign proxies include the analysis of magnetic tongues, soft X-ray and/or extreme-ultraviolet sigmoids, coronal arcade skew, filament emission and absorption threads, and filament rotation. Since the inclination of the posteruption arcades was not clear, we use the tilt of the polarity inversion line to determine the flux rope axis orientation and coronal dimmings to determine the flux rope footpoints, and therefore, the direction of the axial magnetic field. The comparison of the estimated intrinsic flux rope structure to in situ observations at the Lagrangian point L1 indicated a good agreement with the predictions. Our results highlight the flux rope type determination techniques that are particularly useful for active region eruptions, where most geoeffective CMEs originate.
  • Janvier, Miho; Winslow, Reka; Good, Simon; Bonhomme, Elise; Démoulin, Pascal; Dasso, Sergio; Möstl, Christian; Lugaz, Noé; Amerstorfer, Tanja; Soubrié, Elie; Boakes, Peter D. (2019)
    We study interplanetary coronal mass ejections (ICMEs) measured by probes at different heliocentric distances (0.3-1 AU) to investigate the propagation of ICMEs in the inner heliosphere and determine how the generic features of ICMEs change with heliospheric distance. Using data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER), Venus Express and ACE spacecraft, we analyze with the superposed epoch technique the profiles of ICME substructures, namely, the sheath and the magnetic ejecta. We determine that the median magnetic field magnitude in the sheath correlates well with ICME speeds at 1 AU, and we use this proxy to order the ICMEs at all spacecraft. We then investigate the typical ICME profiles for three categories equivalent to slow, intermediate, and fast ICMEs. Contrary to fast ICMEs, slow ICMEs have a weaker solar wind field at the front and a more symmetric magnetic field profile. We find the asymmetry to be less pronounced at Earth than at Mercury, indicating a relaxation taking place as ICMEs propagate. We also find that the magnetic field intensities in the wake region of the ICMEs do not go back to the pre-ICME solar wind intensities, suggesting that the effects of ICMEs on the ambient solar wind last longer than the duration of the transient event. Such results provide an indication of physical processes that need to be reproduced by numerical simulations of ICME propagation. The samples studied here will be greatly improved by future missions dedicated to the exploration of the inner heliosphere, such as Parker Solar Probe and Solar Orbiter.
  • Kilpua, Emilia K. J.; Good, Simon W.; Palmerio, Erika; Asvestari, Eleanna; Lumme, Erkka; Ala-Lahti, Matti; Kalliokoski, Milla M. H.; Morosan, Diana E.; Pomoell, Jens; Price, Daniel J.; Magdalenić, Jasmina; Poedts, Stefaan; Futaana, Yoshifumi (2019)
    We report a detailed analysis of interplanetary flux ropes observed at Venus and subsequently at Earth's Lagrange L1 point between June 15 and 17, 2012. The observation points were separated by about 0.28 AU in radial distance and 5 degrees in heliographic longitude at this time. The flux ropes were associated with three coronal mass ejections (CMEs) that erupted from the Sun on June 12-14, 2012 (SOL2012-06-12, SOL2012-06-13, and SOL2012-06-14). We examine the CME-CME interactions using in-situ observations from the almost radially aligned spacecraft at Venus and Earth, as well as using heliospheric modeling and imagery. The June 14 CME reached the June 13 CME near the orbit of Venus and significant interaction occurred before they both reached Earth. The shock driven by the June 14 CME propagated through the June 13 CME and the two CMEs coalesced, creating the signatures of one large, coherent flux rope at L1. We discuss the origin of the strong interplanetary magnetic fields related to this sequence of events, the complexity of interpreting solar wind observations in the case of multiple interacting CMEs, and the coherence of the flux ropes at different observation points.
  • Lumme, E.; Pomoell, J.; Kilpua, E. K. J. (2017)
    Estimates of the photospheric magnetic, electric, and plasma velocity fields are essential for studying the dynamics of the solar atmosphere, for example through the derivative quantities of Poynting and relative helicity flux and using the fields to obtain the lower boundary condition for data-driven coronal simulations. In this paper we study the performance of a data processing and electric field inversion approach that requires only high-resolution and high-cadence line-of-sight or vector magnetograms, which we obtain from the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO). The approach does not require any photospheric velocity estimates, and the lacking velocity information is compensated for using ad hoc assumptions. We show that the free parameters of these assumptions can be optimized to reproduce the time evolution of the total magnetic energy injection through the photosphere in NOAA AR 11158, when compared to recent state-of-the-art estimates for this active region. However, we find that the relative magnetic helicity injection is reproduced poorly, reaching at best a modest underestimation. We also discuss the effect of some of the data processing details on the results, including the masking of the noise-dominated pixels and the tracking method of the active region, neither of which has received much attention in the literature so far. In most cases the effect of these details is small, but when the optimization of the free parameters of the ad hoc assumptions is considered, a consistent use of the noise mask is required. The results found in this paper imply that the data processing and electric field inversion approach that uses only the photospheric magnetic field information offers a flexible and straightforward way to obtain photospheric magnetic and electric field estimates suitable for practical applications such as coronal modeling studies.
  • Planck Collaboration; Akrami, Y.; Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Valiviita, J. (2020)
    The study of polarized dust emission has become entwined with the analysis of the cosmic microwave background (CMB) polarization in the quest for the curl-like B-mode polarization from primordial gravitational waves and the low-multipole E-mode polarization associated with the reionization of the Universe. We used the new Planck PR3 maps to characterize Galactic dust emission at high latitudes as a foreground to the CMB polarization and use end-to-end simulations to compute uncertainties and assess the statistical significance of our measurements. We present PlanckEE, BB, and TE power spectra of dust polarization at 353 GHz for a set of six nested high-Galactic-latitude sky regions covering from 24 to 71% of the sky. We present power-law fits to the angular power spectra, yielding evidence for statistically significant variations of the exponents over sky regions and a difference between the values for the EE and BB spectra, which for the largest sky region are alpha (EE)=-2.42 +/- 0.02 and alpha (BB)=-2.54 +/- 0.02, respectively. The spectra show that the TE correlation and E/B power asymmetry discovered by Planck extend to low multipoles that were not included in earlier Planck polarization papers due to residual data systematics. We also report evidence for a positive TB dust signal. Combining data from Planck and WMAP, we have determined the amplitudes and spectral energy distributions (SEDs) of polarized foregrounds, including the correlation between dust and synchrotron polarized emission, for the six sky regions as a function of multipole. This quantifies the challenge of the component-separation procedure that is required for measuring the low-l reionization CMB E-mode signal and detecting the reionization and recombination peaks of primordial CMB B modes. The SED of polarized dust emission is fit well by a single-temperature modified black-body emission law from 353 GHz to below 70 GHz. For a dust temperature of 19.6 K, the mean dust spectral index for dust polarization is beta (P)(d) = 1.53 +/- 0.02 beta d P = 1.53 +/- 0.02 . The difference between indices for polarization and total intensity is beta (P)(d)-beta (I)(d) = 0.05 +/- 0.03 beta d P - beta d I =0.05 +/- 0.03 . By fitting multi-frequency cross-spectra between Planck data at 100, 143, 217, and 353 GHz, we examine the correlation of the dust polarization maps across frequency. We find no evidence for a loss of correlation and provide lower limits to the correlation ratio that are tighter than values we derive from the correlation of the 217- and 353 GHz maps alone. If the Planck limit on decorrelation for the largest sky region applies to the smaller sky regions observed by sub-orbital experiments, then frequency decorrelation of dust polarization might not be a problem for CMB experiments aiming at a primordial B-mode detection limit on the tensor-to-scalar ratio r similar or equal to 0.01 at the recombination peak. However, the Planck sensitivity precludes identifying how difficult the component-separation problem will be for more ambitious experiments targeting lower limits on r.
  • Zhao, L-L; Zank, G. P.; He, J. S.; Telloni, D.; Hu, Q.; Li, G.; Nakanotani, M.; Adhikari, L.; Kilpua, E. K. J.; Horbury, T. S.; O'Brien, H.; Evans, Bradley; Angelini, Corrado (2021)
    Aims. An interplanetary coronal mass ejection (ICME) event was observed by the Solar Orbiter at 0.8 AU on 2020 April 19 and by Wind at 1 AU on 2020 April 20. Futhermore, an interplanetary shock wave was driven in front of the ICME. Here, we focus on the transmission of the magnetic fluctuations across the shock and we analyze the characteristic wave modes of solar wind turbulence in the vicinity of the shock observed by both spacecraft. Methods. The observed ICME event is characterized by a magnetic helicity-based technique. The ICME-driven shock normal was determined by magnetic coplanarity method for the Solar Orbiter and using a mixed plasma and field approach for Wind. The power spectra of magnetic field fluctuations were generated by applying both a fast Fourier transform and Morlet wavelet analysis. To understand the nature of waves observed near the shock, we used the normalized magnetic helicity as a diagnostic parameter. The wavelet-reconstructed magnetic field fluctuation hodograms were used to further study the polarization properties of waves. Results. We find that the ICME-driven shock observed by Solar Orbiter and Wind is a fast, forward oblique shock with a more perpendicular shock angle at the Wind position. After the shock crossing, the magnetic field fluctuation power increases. Most of the magnetic field fluctuation power resides in the transverse fluctuations. In the vicinity of the shock, both spacecraft observe right-hand polarized waves in the spacecraft frame. The upstream wave signatures fall within a relatively broad and low frequency band, which might be attributed to low frequency MHD waves excited by the streaming particles. For the downstream magnetic wave activity, we find oblique kinetic Alfven waves with frequencies near the proton cyclotron frequency in the spacecraft frame. The frequency of the downstream waves increases by a factor of similar to 7-10 due to the shock compression and the Doppler effect.
  • Pal, Sanchita; Kilpua, Emilia; Good, Simon; Pomoell, Jens; Price, Daniel (2021)
    Context. Magnetic clouds (MCs) are transient structures containing large-scale magnetic flux ropes from solar eruptions. The twist of magnetic field lines around the rope axis reveals information about flux rope formation processes and geoeffectivity. During propagation MC flux ropes may erode via reconnection with the ambient solar wind. Any erosion reduces the magnetic flux and helicity of the ropes, and changes their cross-sectional twist profiles. Aims. This study relates twist profiles in MC flux ropes observed at 1 AU to the amount of erosion undergone by the MCs in interplanetary space. Methods. The twist profiles of two clearly identified MC flux ropes associated with the clear appearance of post eruption arcades in the solar corona are analyzed. To infer the amount of erosion, the magnetic flux content of the ropes in the solar atmosphere is estimated, and compared to estimates at 1 AU. Results. The first MC shows a monotonically decreasing twist from the axis to the periphery, while the second displays high twist at the axis, rising twist near the edges, and lower twist in between. The first MC displays a larger reduction in magnetic flux between the Sun and 1 AU, suggesting more erosion than that seen in the second MC. Conclusions. In the second cloud the rising twist at the rope edges may have been due to an envelope of overlying coronal field lines with relatively high twist, formed by reconnection beneath the erupting flux rope in the low corona. This high-twist envelope remained almost intact from the Sun to 1 AU due to the low erosion levels. In contrast, the high-twist envelope of the first cloud may have been entirely peeled away via erosion by the time it reaches 1 AU.