Browsing by Subject "HIGH-RESOLUTION"

Sort by: Order: Results:

Now showing items 1-20 of 36
  • Arppe, Laura; Kurki, Eija; Wooller, Matthew J.; Luoto, Tomi P.; Zajaczkowski, Marek; Ojala, Antti E. K. (2017)
    The oxygen isotope composition of chironomid head capsules in a sediment core spanning the past 5500 years from Lake Svartvatnet in southern Spitsbergen was used to reconstruct the oxygen isotope composition of lake water (O-18(lw)) and local precipitation. The O-18(lw) values display shifts from the baseline variability consistent with the timing of recognized historical climatic episodes, such as the Roman Warm Period, the Dark Ages Cold Period and the Little Ice Age'. The highest values of the record, ca. 3 parts per thousand above modern O-18(lw) values, occur at ca. 1900-1800 cal. yr BP. Three negative excursions increasing in intensity toward the present, at 3400-3200, 1250-1100, and 350-50 cal. yr BP, are tentatively linked to roughly synchronous episodes of increased glacier activity and general cold spells around the northern North Atlantic. Their manifestation in the Svartvatnet O-18(lw) record not only testify to the sensitivity and potential of high Arctic lacustrine O-18(chir) records in tracking terrestrial climate evolution but also highlight nonlinear dynamics within the northern North Atlantic hydroclimatic system. The Little Ice Age' period at 350-50 cal. yr BP displays a remarkable 8-9 parts per thousand drop in O-18(lw) values, construed to predominantly represent significantly decreased winter temperatures during a period of increased seasonal differences and extended sea ice cover inducing changes in moisture source regions.
  • Franchin, Alessandro; Downard, Andy; Kangasluoma, Juha; Nieminen, Tuomo; Lehtipalo, Katrianne; Steiner, Gerhard; Manninen, Hanna E.; Petäjä, Tuukka; Flagan, Richard C.; Kulmala, Markku (2016)
    Reliable and reproducible measurements of atmospheric aerosol particle number size distributions below 10 nm require optimized classification instruments with high particle transmission efficiency. Almost all differential mobility analyzers (DMAs) have an unfavorable potential gradient at the outlet (e.g., long column, Vienna type) or at the inlet (nano-radial DMA), preventing them from achieving a good transmission efficiency for the smallest nanoparticles. We developed a new high-transmission inlet for the Caltech nano-radial DMA (nRDMA) that increases the transmission efficiency to 12% for ions as small as 1.3 nm in Millikan-Fuchs mobility equivalent diameter, D-p (corresponding to 1.2 x 10(-4) m(2) V-1 s(-1) in electrical mobility). We successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a particle size magnifier (PSM) and as a booster a condensation particle counter (CPC). With this setup, we were able to measure size distributions of ions within a mobility range from 1.2 x 10(-4) to 5.8 x 10(-6) m(2) V-1 s(-1). The system was modeled, tested in the laboratory and used to measure negative ions at ambient concentrations in the CLOUD (Cosmics Leaving Outdoor Droplets) 7 measurement campaign at CERN. We achieved a higher size resolution (R = 5.5 at D-p = 1.47 nm) than techniques currently used in field measurements (e.g., Neutral cluster and Air Ion Spectrometer (NAIS), which has a R similar to 2 at largest sizes, and R similar to 1.8 at D-p = 1.5 nm) and maintained a good total transmission efficiency (6.3% at D-p = 1.5 nm) at moderate inlet and sheath airflows (2.5 and 30 L min(-1), respectively). In this paper, by measuring size distributions at high size resolution down to 1.3 nm, we extend the limit of the current technology. The current setup is limited to ion measurements. However, we envision that future research focused on the charging mechanisms could extend the technique to measure neutral aerosol particles as well, so that it will be possible to measure size distributions of ambient aerosols from 1 nm to 1 mu m.
  • Attoui, Michel; Kangasluoma, Juha (2019)
    Tetraheptylammonium bromide (THABr), tetrabutylammonium bromide (TBABr) and tetraethylammonium bromide (TEABr) dissolved in methanol or water methanol mixtures (similar to 1 mM) produce via positive electrospray atomization and high resolution classification electrical classification standard clean ions (monomer and dier) which are singly charged. THABr is hydrophobic and insoluble in water, TBABr and TEABr are hygroscopic and water soluble (0.6 and 2.8 kg/L respectively). These ions are used to study the effect of hygroscopicity on the activation of aerosol particles in the sub 2 nm range via the detection efficiency measurement of a boosted ultrafine TSI condensation particle counter (3025A). Water solubility of particles seems to play a role in the activation and growth with butanol vapor in the CPC (condensation particle counter) independently of the size.
  • Crenn, V.; Sciare, J.; Croteau, P. L.; Verlhac, S.; Froehlich, R.; Belis, C. A.; Aas, W.; Äijälä, M.; Alastuey, A.; Artinano, B.; Baisnee, D.; Bonnaire, N.; Bressi, M.; Canagaratna, M.; Canonaco, F.; Carbone, C.; Cavalli, F.; Coz, E.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Lunder, C.; Minguillon, M. C.; Mocnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petit, J. -E.; Petralia, E.; Poulain, L.; Priestman, M.; Riffault, V.; Ripoll, A.; Sarda-Esteve, R.; Slowik, J. G.; Setyan, A.; Wiedensohler, A.; Baltensperger, U.; Prevot, A. S. H.; Jayne, J. T.; Favez, O. (2015)
    As part of the European ACTRIS project, the first large Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) intercomparison study was conducted in the region of Paris for 3 weeks during the late-fall-early-winter period (November-December 2013). The first week was dedicated to the tuning and calibration of each instrument, whereas the second and third were dedicated to side-by-side comparison in ambient conditions with co-located instruments providing independent information on submicron aerosol optical, physical, and chemical properties. Near real-time measurements of the major chemical species (organic matter, sulfate, nitrate, ammonium, and chloride) in the non-refractory submicron aerosols (NR-PM1) were obtained here from 13 Q-ACSM. The results show that these instruments can produce highly comparable and robust measurements of the NR-PM1 total mass and its major components. Taking the median of the 13 Q-ACSM as a reference for this study, strong correlations (r(2) > 0.9) were observed systematically for each individual Q-ACSM across all chemical families except for chloride for which three Q-ACSMs showing weak correlations partly due to the very low concentrations during the study. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were determined using appropriate methodologies defined by the International Standard Organization (ISO 17025, 1999) and were found to be 9, 15, 19, 28, and 36% for NR-PM1, nitrate, organic matter, sulfate, and ammonium, respectively. However, discrepancies were observed in the relative concentrations of the constituent mass fragments for each chemical component. In particular, significant differences were observed for the organic fragment at mass-to-charge ratio 44, which is a key parameter describing the oxidation state of organic aerosol. Following this first major intercomparison exercise of a large number of Q-ACSMs, detailed intercomparison results are presented, along with a discussion of some recommendations about best calibration practices, standardized data processing, and data treatment.
  • Froehlich, R.; Crenn, V.; Setyan, A.; Belis, C. A.; Canonaco, F.; Favez, O.; Riffault, V.; Slowik, J. G.; Aas, W.; Aijala, M.; Alastuey, A.; Artinano, B.; Bonnaire, N.; Bozzetti, C.; Bressi, M.; Carbone, C.; Coz, E.; Croteau, P. L.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Jayne, J. T.; Lunder, C. R.; Minguillon, M. C.; Mocnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petralia, E.; Poulain, L.; Priestman, M.; Ripoll, A.; Sarda-Esteve, R.; Wiedensohler, A.; Baltensperger, U.; Sciare, J.; Prevot, A. S. H. (2015)
    Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December similar to 2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f(44)), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f(44) in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the factors (HOA: 14.3 +/- 2.2 %, COA: 15.0 +/- 3.4 %, OOA: 41.5 +/- 5.7 %, BBOA: 29.3 +/- 5.0 %). Factors which tend to be subject to minor factor mixing (in this case COA) have higher relative uncertainties than factors which are recognised more readily like the OOA. Averaged over all factors and instruments the relative first SD from the mean of a source extracted with ME-2 was 17.2 %.
  • Mammola, Stefano; Pétillon, Julien; Hacala, Axel; Monsimet, Jérémy; Marti, Sapho-Lou; Cardoso, Pedro; Lafage, Denis (2021)
    Aim Species distribution models (SDMs) have emerged as essential tools in the equipment of many ecologists, useful to explore species distributions in space and time and answering an assortment of questions related to biogeography, climate change biology and conservation biology. Historically, most SDM research concentrated on well-known organisms, especially vertebrates. In recent years, these tools are becoming increasingly important for predicting the distribution of understudied invertebrate taxa. Here, we reviewed the literature published on main terrestrial arthropod predators (ants, ground beetles and spiders) to explore some of the challenges and opportunities of species distribution modelling in mega-diverse arthropod groups. Location Global. Methods Systematic mapping of the literature and bibliometric analysis. Results Most SDM studies of animals to date have focused either on broad samples of vertebrates or on arthropod species that are charismatic (e.g. butterflies) or economically important (e.g. vectors of disease, crop pests and pollinators). We show that the use of SDMs to map the geography of terrestrial arthropod predators is a nascent phenomenon, with a near-exponential growth in the number of studies over the past ten years and still limited collaborative networks among researchers. There is a bias in studies towards charismatic species and geographical areas that hold lower levels of diversity but greater availability of data, such as Europe and North America. Conclusions Arthropods pose particular modelling challenges that add to the ones already present for vertebrates, but they should also offer opportunities for future SDM research as data and new methods are made available. To overcome data limitations, we illustrate the potential of modern data sources and new modelling approaches. We discuss areas of research where SDMs may be combined with dispersal models and increasingly available phylogenetic and functional data to understand evolutionary changes in ranges and range-limiting traits over past and contemporary time-scales.
  • Saarikoski, S.; Reyes, F.; Vázquez, Y.; Tagle, M.; Timonen, H.; Aurela, M.; Carbone, S.; Worsnop, D.R.; Hillamo, R.; Oyola, P. (2019)
    Chemical characteristics and the sources of submicron particles (<1 mu m in diameter) were investigated in Valle Alegre, the coastal area of Central Chile. The chemical composition of particles was studied by using a Soot particle Aerosol Mass Spectrometer and Multi-Angle Absorption Photometer. Submicron particles were dominated by organics (42% of mass) and sulfate (39% of mass) while the mass fractions of ammonium, nitrate and black carbon were much smaller (13, 2 and 4% of mass, respectively). Additionally, several metals (V, Zn, Fe, Cd, Cu, K, Na and Mg) were detected in submicron particles and also some of their inorganic salts (e.g. NaCl+, MgCl2+, CaCl2+, KCl+ and KNO3+). The sources of particles were examined by using Positive Matrix Factorization (PMF). Organic aerosol (OA) was divided into five factors by using PMF; hydrocarbon-like OA (HOA), biomass burning OA (BBOA), low-volatility oxygenated OA (LV-OOA), semi-volatile OA (SV-OOA) and marine oxygenated OOA (MOOA), Oxygenated factors (LV-OOA; SV-OOA and MOOA) comprised 75% of total OA with LV-OOA being the dominant factor (38% of OA). Sulfate had two major sources in Valle Alegre; similar to 70% of sulfate was related to anthropogenic sources through the oxidation of gas phase SO2 whereas similar to 24% of sulfate was associated with biogenic origin related to the oxidation of dimethyl sulfide in the marine environment. Regarding total submicron particle mass (campaign-average 9.5 mu g m(-3)), the contribution of anthropogenic sources was at least as large as that of biogenic origin.
  • Carbone, S.; Onasch, T.; Saarikoski, S.; Timonen, H.; Saarnio, K.; Sueper, D.; Ronkko, T.; Pirjola, L.; Häyrinen, A.; Worsnop, D.; Hillamo, R. (2015)
    A method to detect and quantify mass concentrations of trace metals on soot particles by the Aerodyne soot-particle aerosol mass spectrometer (SP-AMS) was developed and evaluated in this study. The generation of monodisperse Regal black (RB) test particles with trace amounts of 13 different metals (Na, Al, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr and Ba) allowed for the determination of the relative ionization efficiency of each metal relative to black carbon (RIEmeas). The observed RIEmeas/RIEtheory values were larger than unity for Na, Rb, Ca, Sr and Ba due to thermal surface ionization (TSI) on the surface of the laser-heated RB particles. Values closer to unity were obtained for the transition metals Zn, Cu, V and Cr. Mn, Fe, and Ni presented the lowest RIEmeas/RIEtheory ratios and highest deviation from unity. The latter discrepancy is unexplained; however it may be related to problems with our calibration method and/or the formation of metal complexes that were not successfully quantified. The response of the metals to the laser power was investigated and the results indicated that a minimum pump laser current of 0.6 A was needed in order to vaporize the metals and the refractory black carbon (rBC). Isotopic patterns of metals were resolved from high-resolution mass spectra, and the mass-weighted size distributions for each individual metal ion were obtained using the high-resolution particle time-of-flight (HR-PToF) method. The RIEmeas values obtained in this study were applied to the data of emission measurements in a heavy-fuel-oil-fired heating station. Emission measurements revealed a large number of trace metals, including evidence for metal oxides and metallic salts, such as vanadium sulfate, calcium sulfate, iron sulfate and barium sulfate, which were identified in the SP-AMS high-resolution mass spectra. SP-AMS measurements of Ba, Fe, and V agreed with ICP-MS analyzed filter samples within a factor of 2 when emitted rBC mass loadings were elevated.
  • Hao, Liqing; Garmash, Olga; Ehn, Mikael; Miettinen, Pasi; Massoli, Paola; Mikkonen, Santtu; Jokinen, Tuija; Roldin, Pontus; Aalto, Pasi; Yli-Juuti, Taina; Joutsensaari, Jorma; Petäjä, Tuukka; Kulmala, Markku; Lehtinen, Kari E. J.; Worsnop, Douglas R.; Virtanen, Annele (2018)
    Characterizing aerosol chemical composition in response to meteorological changes and atmospheric chemistry is important to gain insights into new particle formation mechanisms. A BAECC (Biogenic Aerosols - Effects on Clouds and Climate) campaign was conducted during the spring 2014 at the SMEAR II station (Station for Measuring Forest Ecosystem-Aerosol Relations) in Finland. The particles were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A PBL (planetary boundary layer) dilution model was developed to assist interpreting the measurement results. Right before nucleation events, the mass concentrations of organic and sulfate aerosol species were both decreased rapidly along with the growth of PBL heights. However, the mass fraction of sulfate aerosol of the total aerosol mass was increased, in contrast to a decrease for the organic mass fraction. Meanwhile, an increase in LVOOA (low-volatility oxygenated organic aerosol) mass fraction of the total organic mass was observed, in distinct comparison to a reduction of SVOOA (semi-volatile OOA) mass fraction. Our results demonstrate that, at the beginning of nucleation events, the observed sulfate aerosol mass was mainly driven by vertical turbulent mixing of sulfate-rich aerosols between the residual layer and the newly formed boundary layer, while the condensation of sulfuric acid (SA) played a minor role in interpreting the measured sulfate mass concentration. For the measured organic aerosols, their temporal profiles were mainly driven by dilution from PBL development, organic aerosol mixing in different boundary layers and/or partitioning of organic vapors, but accurate measurements of organic vapor concentrations and characterization on the spatial aerosol chemical composition are required. In general, the observed aerosol particles by AMS are subjected to joint effects of PBL dilution, atmospheric chemistry and aerosol mixing in different boundary layers. During aerosol growth periods in the nighttime, the mass concentrations of organic aerosols and organic nitrate aerosols were both increased. The increase in SVOOA mass correlated well with the calculated increase in condensed HOMs' (highly oxygenated organic molecules) mass. To our knowledge, our results are the first atmospheric observations showing a connection between increase in SVOOA and condensed HOMs during the nighttime.
  • Macri, Simone; Savriama, Yoland; Khan, Imran; Di-Poi, Nicolas (2019)
    Ecomorphological studies evaluating the impact of environmental and biological factors on the brain have so far focused on morphology or size measurements, and the ecological relevance of potential multi-level variations in brain architecture remains unclear in vertebrates. Here, we exploit the extraordinary ecomorphological diversity of squamates to assess brain phenotypic diversification with respect to locomotor specialization, by integrating single-cell distribution and transcriptomic data along with geometric morphometric, phylogenetic, and volumetric analysis of high-definition 3D models. We reveal significant changes in cerebellar shape and size as well as alternative spatial layouts of cortical neurons and dynamic gene expression that all correlate with locomotor behaviours. These findings show that locomotor mode is a strong predictor of cerebellar structure and pattern, suggesting that major behavioural transitions in squamates are evolutionarily correlated with mosaic brain changes. Furthermore, our study amplifies the concept of 'cerebrotype', initially proposed for vertebrate brain proportions, towards additional shape characters.
  • Tikkanen, Olli-Pekka; Buchholz, Angela; Ylisirniö, Arttu; Schobesberger, Siegfried; Virtanen, Annele; Yli-Juuti, Taina (2020)
    The volatility distribution of the organic compounds present in secondary organic aerosol (SOA) at different conditions is a key quantity that has to be captured in order to describe SOA dynamics accurately. The development of the Filter Inlet for Gases and AEROsols (FIGAERO) and its coupling to a chemical ionization mass spectrometer (CIMS; collectively FIGAERO-CIMS) has enabled near-simultaneous sampling of the gas and particle phases of SOA through thermal desorption of the particles. The thermal desorption data have been recently shown to be interpretable as a volatility distribution with the use of the positive matrix factorization (PMF) method. Similarly, volatility distributions can be inferred from isothermal particle evaporation experiments when the particle size change measurements are analyzed with process-modeling techniques. In this study, we compare the volatility distributions that are retrieved from FIGAERO-CIMS and particle size change measurements during isothermal particle evaporation with process-modeling techniques. We compare the volatility distributions at two different relative humidities (RHs) and two oxidation conditions. In high-RH conditions, where particles are in a liquid state, we show that the volatility distributions derived via the two ways are similar within a reasonable assumption of uncertainty in the effective saturation mass concentrations that are derived from FIGAERO-CIMS data. In dry conditions, we demonstrate that the volatility distributions are comparable in one oxidation condition, and in the other oxidation condition, the volatility distribution derived from the PMF analysis shows considerably more high-volatility matter than the volatility distribution inferred from particle size change measurements. We also show that the Vogel-Tammann-Fulcher equation together with a recent glass transition temperature parametrization for organic compounds and PMF-derived volatility distribution estimates are consistent with the observed isothermal evaporation under dry conditions within the reported uncertainties. We conclude that the FIGAERO-CIMS measurements analyzed with the PMF method are a promising method for inferring the volatility distribution of organic compounds, but care has to be taken when the PMF factors are analyzed. Future process-modeling studies about SOA dynamics and properties could benefit from simultaneous FIGAERO-CIMS measurements.
  • Lopez-Hilfiker, Felipe D.; Iyer, Siddharth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurten, Theo; Thornton, Joel A. (2016)
    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion-molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion-molecule reaction time, which is strongly influenced by mixing and ion losses in the ion-molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidates the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.
  • Cai, Runlong; Yang, Dongsen; Ahonen, Lauri R.; Shi, Linlin; Korhonen, Frans; Ma, Yan; Hao, Jiming; Petäjä, Tuukka; Zheng, Jun; Kangasluoma, Juha; Jiang, Jingkun (2018)
    Measuring particle size distribution accurately down to approximately 1 nm is needed for studying atmospheric new particle formation. The scanning particle size magnifier (PSM) using diethylene glycol as a working fluid has been used for measuring sub-3 nm atmospheric aerosol. A proper inversion method is required to recover the particle size distribution from PSM raw data. Similarly to other aerosol spectrometers and classifiers, PSM inversion can be deduced from a problem described by the Fredholm integral equation of the first kind. We tested the performance of the stepwise method, the kernel function method (Lehtipalo et al., 2014), the H&A linear inversion method (Hagen and Alofs, 1983), and the expectation-maximization (EM) algorithm. The stepwise method and the kernel function method were used in previous studies on PSM. The H&A method and the expectation-maximization algorithm were used in data inversion for the electrical mobility spectrometers and the diffusion batteries, respectively (Maher and Laird, 1985). In addition, Monte Carlo simulation and laboratory experiments were used to test the accuracy and precision of the particle size distributions recovered using four inversion methods. When all of the detected particles are larger than 3 nm, the stepwise method may report false sub-3 nm particle concentrations because an infinite resolution is assumed while the kernel function method and the H&A method occasionally report false sub-3 nm particles because of the unstable least squares method. The accuracy and precision of the recovered particle size distribution using the EM algorithm are the best among the tested four inversion methods. Compared to the kernel function method, the H&A method reduces the uncertainty while keeping a similar computational expense. The measuring uncertainties in the present scanning mode may contribute to the uncertainties of the recovered particle size distributions. We suggest using the EM algorithm to retrieve the particle size distributions using the particle number concentrations recorded by the PSM. Considering the relatively high computation expenses of the EM algorithm, the H&A method is recommended for preliminary data analysis. We also gave practical suggestions on PSM operation based on the inversion analysis.
  • Stivrins, N.; Ozola, I.; Galka, M.; Kuske, E.; Alliksaar, T.; Andersen, T. J.; Lamentowicz, M.; Wulf, S.; Reitalu, T. (2017)
    We used variation partitioning to assess the relative importance of drainage, climate and local vegetation composition for the development of a raised bog. As a case study we selected Teici (Teici) Bog in Latvia (north-east Europe). Explanatory variables together explained 74 % of the variation in peat accumulation and only the residue of 26 % remained unexplained. Our study showed that the local vegetation composition and dominant Sphagnum species significantly influence peat accumulation rates. The results of linear models revealed that, under natural conditions, minor drainage and even strong drainage of the peat is associated with a positive growth balance of the system. However, drainage systems can have a measurable impact on peatland ecosystems situated farther away. Our study demonstrates that the average peat accumulation rate in Teici Bog over the last 150 years was 3.5 mm per year. Although the peat accumulation rate has been affected by drainage over the last half-century, it is still 2.8 mm per year. There was no strong correlation with the historical climate record, suggesting that the bog area has buffered the influence of climate change over the last 150 years.
  • Hong, Juan; Äijälä, Mikko; Häme , Silja A. K.; Hao, Liqing; Duplissy, Jonathan; Heikkinen, Liine M.; Nie, Wei; Mikkilä, Jyri; Kulmala, Markku; Prisle, Nonne L.; Virtanen, Annele; Ehn, Mikael; Paasonen, Pauli; Worsnop, Douglas R.; Riipinen, Ilona; Petäjä, Tuukka; Kerminen, Veli-Matti (2017)
    The volatility distribution of secondary organic aerosols that formed and had undergone aging - i. e., the particle mass fractions of semi-volatile, low-volatility and extremely low volatility organic compounds in the particle phase - was characterized in a boreal forest environment of Hyytiala, southern Finland. This was done by interpreting field measurements using a volatility tandem differential mobility analyzer (VTDMA) with a kinetic evaporation model. The field measurements were performed during April and May 2014. On average, 40% of the organics in particles were semi-volatile, 34% were low-volatility organics and 26% were extremely low volatility organics. The model was, however, very sensitive to the vaporization enthalpies assumed for the organics (Delta H-VAP). The best agreement between the observed and modeled temperature dependence of the evaporation was obtained when effective vaporization enthalpy values of 80 kJ mol(-1) were assumed. There are several potential reasons for the low effective enthalpy value, including molecular decomposition or dissociation that might occur in the particle phase upon heating, mixture effects and compound-dependent uncertainties in the mass accommodation coefficient. In addition to the VTDMA-based analysis, semi-volatile and low-volatility organic mass fractions were independently determined by applying positive matrix factorization (PMF) to high-resolution aerosol mass spectrometer (HR-AMS) data. The factor separation was based on the oxygenation levels of organics, specifically the relative abundance of mass ions at m/z 43 (f43) and m/z 44 (f44). The mass fractions of these two organic groups were compared against the VTDMA-based results. In general, the best agreement between the VTDMA results and the PMF-derived mass fractions of organics was obtained when Delta H-VAP D 80 kJ mol(-1) was set for all organic groups in the model, with a linear correlation coefficient of around 0.4. However, this still indicates that only about 16% (R-2)of the variation can be explained by the linear regression between the results from these two methods. The prospect of determining of extremely low volatility organic aerosols (ELVOAs) from AMS data using the PMF analysis should be assessed in future studies.
  • Keskinen, Helmi-Marja; Joutsensaari, J.; Tsagkogeorgas, G.; Duplissy, Jonathan; Schobesberger, S.; Gysel, M.; Riccobono, F.; Slowik, J. G.; Bianchi, F.; Yli-Juuti, T.; Lehtipalo, K.; Rondo, L.; Breitenlechner, M.; Kupc, A.; Almeida, J.; Amorim, A.; Dunne, E. M.; Downard, A. J.; Ehrhart, S.; Franchin, A.; Kajos, M. K.; Kirkby, J.; Kuerten, A.; Nieminen, Tuomo; Makhmutov, V.; Mathot, S.; Onnela, A.; Petäjä, T.; Praplan, A.; Santos, F. D.; Schallhart, S.; Sipilä, M.; Stozhkov, Y.; Tome, A.; Vaattovaara, P.; Wimmer, D.; Prevot, A.; Dommen, J.; Donahue, N. M.; Flagan, R. C.; Weingartner, E.; Viisanen, Y.; Riipinen, I.; Hansel, A.; Curtius, J.; Kulmala, M.; Worsnop, D. R.; Baltensperger, U.; Wex, H.; Stratmann, F.; Laaksonen, A. (2013)
  • Hänninen, Ulrika A.; Katainen, Riku; Tanskanen, Tomas; Plaketti, Roosa-Maria; Laine, Riku; Hamberg, Jiri; Ristimäki, Ari; Pukkala, Eero; Taipale, Minna; Mecklin, Jukka-Pekka; Forsström, Linda M.; Pitkänen, Esa; Palin, Kimmo; Välimäki, Niko; Mäkinen, Netta; Aaltonen, Lauri A. (2018)
    Small bowel adenocarcinoma (SBA) is an aggressive disease with limited treatment options. Despite previous studies, its molecular genetic background has remained somewhat elusive. To comprehensively characterize the mutational landscape of this tumor type, and to identify possible targets of treatment, we conducted the first large exome sequencing study on a population-based set of SBA samples from all three small bowel segments. Archival tissue from 106 primary tumors with appropriate clinical information were available for exome sequencing from a patient series consisting of a majority of confirmed SBA cases diagnosed in Finland between the years 2003-2011. Paired-end exome sequencing was performed using Illumina HiSeq 4000, and OncodriveFML was used to identify driver genes from the exome data. We also defined frequently affected cancer signalling pathways and performed the first extensive allelic imbalance (Al) analysis in SBA. Exome data analysis revealed significantly mutated genes previously linked to SBA (TP53, KRAS, APC, SMAD4, and BRAF), recently reported potential driver genes (SOX9, ATM, and ARID2), as well as novel candidate driver genes, such as ACVR2A, ACVR1B, BRCA2, and SMARCA4. We also identified clear mutation hotspot patterns in ERBB2 and BRAF. No BRAF V600E mutations were observed. Additionally, we present a comprehensive mutation signature analysis of SBA, highlighting established signatures 1A, 6, and 17, as well as U2 which is a previously unvalidated signature. Finally, comparison of the three small bowel segments revealed differences in tumor characteristics. This comprehensive work unveils the mutational landscape and most frequently affected genes and pathways in SBA, providing potential therapeutic targets, and novel and more thorough insights into the genetic background of this tumor type.
  • Yli-Juuti, Taina; Pajunoja, Aki; Tikkanen, Olli-Pekka; Buchholz, Angela; Faiola, Celia; Väisänen, Olli; Hao, Liqing; Kari, Eetu; Peräkylä, Otso; Garmash, Olga; Shiraiwa, Manabu; Ehn, Mikael; Lehtinen, Kari; Virtanen, Annele (2017)
    Secondary organic aerosols (SOA) forms a major fraction of organic aerosols in the atmosphere. Knowledge of SOA properties that affect their dynamics in the atmosphere is needed for improving climate models. By combining experimental and modeling techniques, we investigated the factors controlling SOA evaporation under different humidity conditions. Our experiments support the conclusion of particle phase diffusivity limiting the evaporation under dry conditions. Viscosity of particles at dry conditions was estimated to increase several orders of magnitude during evaporation, up to 10(9)Pas. However, at atmospherically relevant relative humidity and time scales, our results show that diffusion limitations may have a minor effect on evaporation of the studied -pinene SOA particles. Based on previous studies and our model simulations, we suggest that, in warm environments dominated by biogenic emissions, the major uncertainty in models describing the SOA particle evaporation is related to the volatility of SOA constituents.
  • Kangasluoma, Juha; Ahonen, Lauri R.; Laurila, Tiia M.; Cai, Runlong; Enroth, Joonas; Mazon, Stephany Buenrostro; Korhonen, Frans; Aalto, Pasi P.; Kulmala, Markku; Attoui, Michel; Petäjä, Tuukka (2018)
    Measurement of atmospheric sub-10 nm nanoparticle number concentrations has been of substantial interest recently, which, however, is subject to considerable uncertainty. We report a laboratory characterization of a high flow differential mobility particle sizer (HFDMPS), which is based on the Half-mini type differential mobility analyzer (DMA) and nano condensation nuclei counter (A11), and show the first results from atmospheric observations. The HFDMPS utilizes the state-of-the-art aerosol technology, and is optimized for sub-10 nm particle size distribution measurements by a moderate resolution DMA, optimized and characterized low-loss particle sampling line and minimal dilution in the detector. We present an exhaustive laboratory calibration to the HFDMPS and compare the measured size data to the Hyytiala long-term DMPS and Neutral cluster and ion spectrometer. The HFDMPS detects about two times higher 3-10 nm particle concentrations than the long-term DMPS, and the counting uncertainties are halved as compared to the long-term DMPS. The HFDMPS did not observe any sub-2.5 nm particles in Hyytiala, and the reason for that was shown to be the inability of diethylene glycol to condense on such small biogenic particles. Last, we discuss the general implications of our results to the sub-10 nm DMPS based measurements.
  • Brown, Steven G.; Eberly, Shelly; Paatero, Pentti; Norris, Gary A. (2015)
    The new version of EPA's positive matrix factorization (EPA PMF) software, 5.0, includes three error estimation (EE) methods for analyzing factor analytic solutions: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement (BS-DISP). These methods capture the uncertainty of PMF analyses due to randomerrors and rotational ambiguity. To demonstrate the utility of the EEmethods, results are presented for three data sets: (1) speciated PM2.5 data froma chemical speciation network (CSN) site in Sacramento, California (2003-2009); (2) trace metal, ammonia, and other species inwater quality samples taken at an inline storage system (ISS) in Milwaukee, Wisconsin (2006); and (3) an organic aerosol data set from high- resolution aerosolmass spectrometer (HR-AMS) measurements in Las Vegas, Nevada (January 2008). We present an interpretation of EE diagnostics for these data sets, results fromsensitivity tests of EE diagnostics using additional and fewer factors, and recommendations for reporting PMF results. BS-DISP and BS are found useful in understanding the uncertainty of factor profiles; they also suggest if the data are over-fitted by specifying toomany factors. DISP diagnosticswere consistently robust, indicating its use for understanding rotational uncertainty and as a first step in assessing a solution's viability. The uncertainty of each factor's identifying species is shown to be a useful gauge for evaluating multiple solutions, e.g., with a different number of factors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).