Sort by: Order: Results:

Now showing items 1-2 of 2
  • Tiurev, Konstantin; Kuopanportti, Pekko; Möttönen, Mikko (2019)
    We theoretically demonstrate that a pair of Dirac monopoles with opposite synthetic charges can be created within a single spin-1 Bose-Einstein condensate by steering the spin degrees of freedom by external magnetic fields. Although the net synthetic magnetic charge of this configuration vanishes, both the monopole and the antimonopole are accompanied by vortex filaments carrying opposite angular momenta. Such a Dirac dipole can be realized experimentally by imprinting a spin texture with a nonlinear magnetic field generated by a pair of coils in a modified Helmholtz configuration. We also investigate the case where the initial state for the dipole-creation procedure is pierced by a quantized vortex line with a winding number kappa. It is shown that if kappa = -1, the resulting monopole and antimonopole lie along the core of a singly quantized vortex whose sign is reversed at the locations of the monopoles. For kappa = -2, the monopole and antimonopole are connected by a vortex line segment carrying two quanta of angular momentum, and hence the dipole as a whole is an isolated configuration. In addition, we simulate the long-time evolution of the dipoles in the magnetic field used to create them. For kappa = 0, each of the semi-infinite doubly quantized vortices splits into two singly quantized vortices, as in the case of a single Dirac monopole. For kappa = -1 and kappa = -2, the initial vortices deform into a vortex with a kink and a vortex ring, respectively.
  • Acharya, B.; Alexandre, J.; Bendtz, K.; Benes, P.; Bernabeu, J.; Campbell, M.; Cecchini, S.; Chwastowski, J.; Chatterjee, A.; de Montigny, M.; Derendarz, D.; De Roeck, A.; Ellis, J. R.; Fairbairn, M.; Felea, D.; Frank, M.; Frekers, D.; Garcia, C.; Giacomelli, G.; Hasegan, D.; Kalliokoski, M.; Katre, A.; Kim, D. -W.; King, M. G. L.; Kinoshita, K.; Lacarrere, D. H.; Lee, S. C.; Leroy, C.; Lionti, A.; Margiotta, A.; Mauri, N.; Mavromatos, N. E.; Mermod, P.; Milstead, D.; Mitsou, V. A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Pavalas, G. E.; Pinfold, J. L.; Platkevic, M.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Stemenoff, G.; MoEDAL Collaboration (2016)
    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area similar to 18 m(2), sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb(-1). No magnetic charge exceeding 0.5g(D) (where g(D) is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV