Browsing by Subject "HISTIDINE"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Abdurakhmanova, Shamsiiat; Semenova, Svetlana; Piepponen, T. Petteri; Panula, Pertti (2019)
    Hypothalamic histaminergic neurons regulate a variety of homeostatic, metabolic and cognitive functions. Recent data have suggested a modulatory role of histamine and histamine receptors in shaping striatal activity and connected the histaminergic system to neuropsychiatric disorders. We characterized exploratory behavior and striatal neurotransmission in mice lacking the histamine producing enzyme histidine decarboxylase (Hdc). The mutant mice showed a distinct behavioral pattern during exploration of novel environment, specifically, increased frequency of rearing seated against the wall, jumping and head/body shakes. This behavioral phenotype was associated with decreased levels of striatal dopamine and serotonin and increased level of dopamine metabolite DOPAC. Gene expression levels of dynorphin and enkephalin, opioids released by medium spiny neurons of striatal direct and indirect pathways respectively, were lower in Hdc mutant mice than in control animals. A low dose of amphetamine led to similar behavioral and biochemical outcomes in both genotypes. Increased striatal dopamine turnover was observed in Hdc KO mice after treatment with dopamine precursor l-Dopa. Overall, our study suggests a role for striatal dopamine and opioid peptides in formation of distinct behavioral phenotype of Hdc KO mice.
  • Bogacheva, Mariia; Egorova, Anna; Slita, Anna; Maretina, Marianna; Baranov, Vladislav; Kiselev, Anton (2017)
    The major barriers for intracellular DNA transportation by cationic polymers are their toxicity, poor endosomal escape and inefficient nuclear uptake. Therefore, we designed novel modular peptide-based carriers modified with SV40 nuclear localization signal (NLS). Core peptide consists of arginine, histidine and cysteine residues for DNA condensation, endosomal escape promotion and interpeptide cross-linking, respectively. We investigated three polyplexes with different NLS content (10 mol%, 50 mol% and 90 mol% of SV40 NLS) as vectors for intranuclear DNA delivery. All carriers tested were able to condense DNA, to protect it from DNAase I and were not toxic to the cells. We observed that cell cycle arrest by hydroxyurea did not affect transfection efficacy of NLS-modified carriers which we confirmed using quantitative confocal microscopy analysis. Overall, peptide carrier modified with 90 mol% of SV40 NLS provided efficient transfection and nuclear uptake in non-dividing cells. Thus, incorporation of NLS into arginine-rich cross-linking peptides is an adequate approach to the development of efficient intranuclear gene delivery vehicles. (C) 2017 Elsevier Ltd. All rights reserved.
  • Vojinovic, Dina; Kalaoja, Marita; Trompet, Stella; Fischer, Krista; Shipley, Martin J.; Li, Shuo; Havulinna, Aki S.; Perola, Markus; Salomaa, Veikko; Yang, Qiong; Sattar, Naveed; Jousilahti, Pekka; Amin, Najaf; Satizabal, Claudia L.; Taba, Nele; Sabayan, Behnam; Vasan, Ramachandran S.; Ikram, M. Arfan; Stott, David J.; Ala-Korpela, Mika; Jukema, J. Wouter; Seshadri, Sudha; Kettunen, Johannes; Kivimaki, Mika; Esko, Tonu; van Duijn, Cornelia M. (2021)
    Objective To conduct a comprehensive analysis of circulating metabolites and incident stroke in large prospective population-based settings. Methods We investigated the association of metabolites with risk of stroke in 7 prospective cohort studies including 1,791 incident stroke events among 38,797 participants in whom circulating metabolites were measured by nuclear magnetic resonance technology. The relationship between metabolites and stroke was assessed with Cox proportional hazards regression models. The analyses were performed considering all incident stroke events and ischemic and hemorrhagic events separately. Results The analyses revealed 10 significant metabolite associations. Amino acid histidine (hazard ratio [HR] per SD 0.90, 95% confidence interval [CI] 0.85, 0.94; p = 4.45 x 10-5), glycolysis-related metabolite pyruvate (HR per SD 1.09, 95% CI 1.04, 1.14; p = 7.45 x 10-4), acute-phase reaction marker glycoprotein acetyls (HR per SD 1.09, 95% CI 1.03, 1.15; p = 1.27 x 10-3), cholesterol in high-density lipoprotein (HDL) 2, and several other lipoprotein particles were associated with risk of stroke. When focused on incident ischemic stroke, a significant association was observed with phenylalanine (HR per SD 1.12, 95% CI 1.05, 1.19; p = 4.13 x 10-4) and total and free cholesterol in large HDL particles. Conclusions We found association of amino acids, glycolysis-related metabolites, acute-phase reaction markers, and several lipoprotein subfractions with the risk of stroke. These findings support the potential of metabolomics to provide new insights into the metabolic changes preceding stroke.
  • Kuoppala, K.; Jaakkola, S.; Garry, B.; Ahvenjarvi, S.; Rinne, M. (2021)
    There is increasing interest in using locally produced protein supplements in dairy cow feeding. The objective of this experiment was to compare rapeseed meal (RSM), faba beans (FBs) and blue lupin seeds (BL) at isonitrogenous amounts as supplements of grass silage and cereal based diets. A control diet (CON) without protein supplement was included in the experiment. Four lactating Nordic Red cows were used in a 4 x 4 Latin Square design with four 21 d periods. The milk production increased with protein supplementation but when expressed as energy corrected milk, the response disappeared due to substantially higher milk fat concentration with CON compared to protein supplemented diets. Milk protein output increased by 8.5, 4.4 and 2.7% when RSM, FB and BL were compared to CON. The main changes in rumen fermentation were the higher propionate and lower butyrate proportion of total rumen volatile fatty acids when the protein supplemented diets were compared to CON. Protein supplementation also clearly increased the ruminal ammonia N concentration. Protein supplementation improved diet organic matter and NDF digestibility but efficiency of microbial protein synthesis per kg organic matter truly digested was not affected. Flow of microbial N was greater when FB compared to BL was fed. All protein supplements decreased the efficiency of nitrogen use in milk production. The marginal efficiency (amount of additional feed protein captured in milk protein) was 0.110, 0.062 and 0.045 for RSM, FB and BL, respectively. The current study supports the evidence that RSM is a good protein supplement for dairy cows, and this effect was at least partly mediated by the lower rumen degradability of RSM protein compared to FB and BL. The relatively small production responses to protein supplementation with simultaneous decrease in nitrogen use efficiency in milk production suggest that economic and environmental consequences of protein feeding need to be carefully considered. (c) 2021 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).