Browsing by Subject "HOM"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Clusius, Petri (Helsingin yliopisto, 2020)
    This thesis presents the Atmospherically Relevant Chemistry and Aerosol Box Model (ARCA box), which is used for simulating atmospheric chemistry and the time evolution of aerosol particles and the formation of stable molecular clusters. The model can be used for example in solving of the concentrations of atmospheric trace gases formed from some predefined precursors, simulation and design of smog chamber experiments or indoor air quality estimation. The backbone of ARCAs chemical library comes from Master Chemical Mechanism (MCM), extended with Peroxy Radical Autoxidation Mechanism (PRAM), and is further extendable with any new reactions. Molecular clustering is simulated with the Atmospheric Cluster Dynamics Code (ACDC). The particle size distribution is represented with two alternative methods whose size and grid density are fully configurable. The evolution of the particle size distribution due to the condensation of low volatile organic vapours and the Brownian coagulation is simulated using established kinetic and thermodynamic theories. The user interface of ARCA differs considerably from the previous comparable models. The model has a graphical user interface which improves its usability and repeatability of the simulations. The user interface increases the potential of ARCA being used also outside the modelling community, for example in the experimental atmospheric sciences or by authorities.
  • Molteni, Ugo; Simon, Mario; Heinritzi, Martin; Hoyle, Christopher R.; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Dias, António; Duplissy, Jonathan; Frege, Carla; Gordon, Hamish; Heyn, Claudia; Jokinen, Tuija; Kürten, Andreas; Lehtipalo, Katrianne; Makhmutov, Vladimir; Petäjä, Tuukka; Pieber, Simone M.; Praplan, Arnaud P.; Schobesberger, Siegfried; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Wagner, Andrea C.; Wagner, Robert; Williamson, Christina; Yan, Chao; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Hansel, Armin; Kirkby, Jasper; Kulmala, Markku; Worsnop, Douglas R.; Dommen, Josef (2019)
    Terpenes are emitted by vegetation, and their oxidation in the atmosphere is an important source of secondary organic aerosol (SOA). A part of this oxidation can proceed through an autoxidation process, yielding highly oxygenated organic molecules (HOMs) with low saturation vapor pressure. They can therefore contribute, even in the absence of sulfuric acid, to new particle formation (NPF). The understanding of the autoxidation mechanism and its kinetics is still far from complete. Here, we present a mechanistic and kinetic analysis of mass spectrometry data from α-pinene (AP) ozonolysis experiments performed during the CLOUD 8 campaign at CERN. We grouped HOMs in classes according to their identified chemical composition and investigated the relative changes of these groups and their components as a function of the reagent concentration. We determined reaction rate constants for the different HOM peroxy radical reaction pathways. The accretion reaction between HOM peroxy radicals was found to be extremely fast. We developed a pseudo-mechanism for HOM formation and added it to the AP oxidation scheme of the Master Chemical Mechanism (MCM). With this extended model, the observed concentrations and trends in HOM formation were successfully simulated.
  • Rissanen, Matti P. (2018)
    Atmospheric autoxidation of volatile organic compounds (VOC) leads to prompt formation of highly oxidized multifunctional compounds (HOM) that have been found crucial in forming ambient secondary organic aerosol (SOA). As a radical chain reaction mediated by oxidized peroxy (RO2) and alkoxy (RO) radical intermediates, the formation pathways can be intercepted by suitable reaction partners, preventing the production of the highest oxidized reaction products, and thus the formation of the most condensable material. Commonly, NO is expected to have a detrimental effect on RO2 chemistry, and thus on autoxidation, whereas the influence of NO2 is mostly neglected. Here it is shown by dedicated flow tube experiments, how high concentration of NO2 suppresses cyclohexene ozonolysis initiated autoxidation chain reaction. Importantly, the addition of NO2 ceases covalently bound dimer production, indicating their production involving acylperoxy radical (RC(O)OO•) intermediates. In related experiments NO was also shown to strongly suppress the highly oxidized product formation, but due to possibility for chain propagating reactions (as with RO2 and HO2 too), the suppression is not as absolute as with NO2. Furthermore, it is shown how NOx reactions with oxidized peroxy radicals lead into indistinguishable product compositions, complicating mass spectral assignments in any RO2 + NOx system. The present work was conducted with atmospheric pressure chemical ionization mass spectrometry (CIMS) as the detection method for the highly oxidized end-products and peroxy radical intermediates, under ambient conditions and at short few second reaction times. Specifically, the insight was gained by addition of a large amount of NO2 (and NO) to the oxidation system, upon which acylperoxy radicals reacted in RC(O)O2 + NO2 → RC(O)O2NO2 reaction to form peroxyacylnitrates, consequently shutting down the oxidation sequence. Keywords: acylperoxy radicals; Autoxidation; dimers; Highly oxidized multifunctional compounds; Highly oxygenated molecules; HOM; nitrogen oxides; peroxyacylnitrate
  • Häkkinen, Ella (Helsingin yliopisto, 2020)
    Atmospheric aerosol particles affect Earth’s radiation balance, human health and visibility. Secondary organic aerosol (SOA) contributes a significant fraction to the total atmospheric organic aerosol, and thus plays an important role in climate change. SOA is formed through oxidation of volatile organic compounds (VOCs) and it consists of many individual organic compounds with varying properties. The oxidation products of VOCs include highly oxygenated organic molecules (HOM) that are estimated to explain a large fraction of SOA formation. To estimate the climate impacts of SOA it is essential to understand its properties in the atmosphere. In this thesis, a method to investigate thermally induced evaporation of organic aerosol was developed. SOA particles were generated in a flow tube from alpha-pinene ozonolysis and then directed into a heated tube to initiate particle evaporation. The size distribution of the particles was measured with parallel identification of the evaporated HOM. This method was capable of providing information of SOA evaporation behaviour and the particle-phase composition at different temperatures. Mass spectra of the evaporated HOM and particle size distribution data were analyzed. The obtained results suggest that SOA contains compounds with a wide range of volatilities, including HOM monomers, dimers and trimers. The volatility behaviour of the particulate HOM and their contribution to SOA particle mass was studied. Furthermore, indications of particle-phase reactions occurring in SOA were found.