Browsing by Subject "HOT-MELT EXTRUSION"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Semjonov, Kristian; Salm, Maia; Lipiäinen, Tiina; Kogermann, Karin; Lust, Andres; Laidmäe, Ivo; Antikainen, Osmo; Strachan, Clare J.; Ehlers, Henrik; Yliruusi, Jouko; Heinämäki, Jyrki (2018)
    Solid dispersions (SDs) hold a proven potential in formulating poorly water-soluble drugs. The present paper investigates the interfacial phenomena associated with the bulk powder flow, water sorption, wetting and dissolution of the SDs prepared by a modified melt and quench-cooling (QC) method. Poorly water-soluble indomethacin (IND) was QC molten with solubilizing graft copolymer (Soluplus (R)) or polyol sugar alcohol (xylitol, XYL). The interfacial interactions of SDs with air/water were found to be reliant on the type (amorphous/crystalline) and amount of the carrier material used. The final SDs were composed of fused agglomerates (SOL) or large jagged particles (XYL) with good wetting and powder flow properties. The initial dissolution of IND was accelerated by both carrier materials studied. The QC molten SDs with amorphous Soluplus (R) significantly improved the dissolution rate of IND at pH 6.8 (79.9 +/- 0.2% at 30 min) compared to that of pure crystalline drug. The substantial improvement in the dissolution rate of IND was in connection with the amorphous state of the drug being stabilized by Soluplus (R) in the QC molten SDs. However, it is evident that a strong H-bond formation between the components in some regions of the QC molten SDs can limit the dissolution of IND. The QC molten two-phase SDs with a polyol carrier (XYL) showed rapid and continuous drug release without reaching a plateau.
  • Ojarinta, Rami; Saarinen, Jukka; Strachan, Clare J.; Korhonen, Ossi; Laitinen, Riikka (2018)
    Co-amorphous mixtures have rarely been formulated as oral dosage forms, even though they have been shown to stabilize amorphous drugs in the solid state and enhance the dissolution properties of poorly soluble drugs. In the present study we formulated tablets consisting of either spray dried co-amorphous ibuprofen-arginine or indomethacin-arginine, mannitol or xylitol and polyvinylpyrrolidone K30 (PVP). Experimental design was used for the selection of tablet compositions, and the effect of tablet composition on tablet characteristics was modelled. Multimodal non-linear imaging, including coherent anti-Stokes Raman scattering (CARS) and sum frequency/second harmonic generation (SFG/SHG) microscopies, as well as scanning electron microscopy, X-ray diffractometry and Fourier-transform infrared spectroscopy were utilized to characterize the tablets. The tablets possessed sufficient strength, but modelling produced no clear evidence about the compaction characteristics of co-amorphous salts. However, co-amorphous drug-arginine mixtures resulted in enhanced dissolution behaviour, and the PVP in the tableting mixture stabilized the supersaturation. The co-amorphous mixtures were physically stable during compaction, but the excipient selection affected the long term stability of the ibuprofen-arginine mixture. CARS and SFG/SHG proved feasible techniques in imaging the component distribution on the tablet surfaces, but possibly due to the limited imaging area, recrystallization detected with xray diffraction was not detected.