Browsing by Subject "HUMAN-PAPILLOMAVIRUS TYPE-16"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Oswald, Evelyn; Kirschberg, Matthias; Aubin, Francois; Alonso, Angel; Hufbauer, Martin; Akguel, Baki; Auvinen, Eeva (2019)
    Human papillomaviruses (HPVs) of genus betapapillomavirus (betaHPV) are implicated in skin carcinogenesis, but their exact role in keratinocyte transformation is poorly understood. We show an interaction of HPV5 and HPV8 oncoproteins E6 and E7 with the nuclear mitotic apparatus protein 1 (NuMA). Binding of E6 or E7 to NuMA induces little aneuploidy, cell cycle alterations, or aberrant centrosomes. Intracellular localization of NuMA is not altered by E6 and E7 expression in 2D cultures. However, the localization profile is predominantly cytoplasmic in 3D organotypic skin models. Both viral proteins colocalize with NuMA in interphase cells, while only E7 colocalizes with NuMA in mitotic cells. Intriguingly, a small subset of cells shows E7 at only one spindle pole, whereas NuMA is present at both poles. This dissimilar distribution of E7 at the spindle poles may alter cell differentiation, which may in turn be relevant for betaHPV-induced skin carcinogenesis.
  • Andjelkovic, Ana; Mordas, Amelia; Bruinsma, Lyon; Ketola, Annika; Cannino, Giuseppe; Giordano, Luca; Dhandapani, Praveen K.; Szibor, Marten; Dufour, Eric; Jacobs, Howard T. (2018)
    Downregulation of Jun N-terminal kinase (JNK) signaling inhibits cell migration in diverse model systems. In Drosophila pupal development, attenuated JNK signaling in the thoracic dorsal epithelium leads to defective midline closure, resulting in cleft thorax. Here we report that concomitant expression of the Ciona intestinalis alternative oxidase (AOX) was able to compensate for JNK pathway downregulation, substantially correcting the cleft thorax phenotype. AOX expression also promoted wound-healing behavior and single-cell migration in immortalized mouse embryonic fibroblasts (iMEFs), counteracting the effect of JNK pathway inhibition. However, AOX was not able to rescue developmental phenotypes resulting from knockdown of the AP-1 transcription factor, the canonical target of JNK, nor its targets and had no effect on AP-1-dependent transcription. The migration of AOX-expressing iMEFs in the wound-healing assay was differentially stimulated by antimycin A, which redirects respiratory electron flow through AOX, altering the balance between mitochondrial ATP and heat production. Since other treatments affecting mitochondrial ATP did not stimulate wound healing, we propose increased mitochondrial heat production as the most likely primary mechanism of action of AOX in promoting cell migration in these various contexts.
  • Lagström, Sonja; Umu, Sinan Ugur; Lepistö, Maija; Ellonen, Pekka; Meisal, Roger; Christiansen, Irene Kraus; Ambur, Ole Herman; Rounge, Trine B. (2019)
    HPV genomic variability and chromosomal integration are important in the HPV-induced carcinogenic process. To uncover these genomic events in an HPV infection, we have developed an innovative and cost-effective sequencing approach named TaME-seq (tagmentation-assisted multiplex PCR enrichment sequencing). TaME-seq combines tagmentation and multiplex PCR enrichment for simultaneous analysis of HPV variation and chromosomal integration, and it can also be adapted to other viruses. For method validation, cell lines (n = 4), plasmids (n = 3), and HPV16, 18, 31, 33 and 45 positive clinical samples (n = 21) were analysed. Our results showed deep HPV genome-wide sequencing coverage. Chromosomal integration breakpoints and large deletions were identified in HPV positive cell lines and in one clinical sample. HPV genomic variability was observed in all samples allowing identification of low frequency variants. In contrast to other approaches, TaME-seq proved to be highly efficient in HPV target enrichment, leading to reduced sequencing costs. Comprehensive studies on HPV intra-host variability generated during a persistent infection will improve our understanding of viral carcinogenesis. Efficient identification of both HPV variability and integration sites will be important for the study of HPV evolution and adaptability and may be an important tool for use in cervical cancer diagnostics.