Browsing by Subject "HYGROSCOPIC GROWTH"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Doulgeris, Konstantinos M.; Brus, David; Raatikainen, Tomi; Kerminen, Veli-Matti (2018)
    The Finnish Meteorological Institute-Aerosol Cloud Interaction Tube (FMI-ACIT) is a multi-purpose instrument for investigating atmospherically relevant interactions between aerosol particles and water vapor under defined laboratory conditions. This work introduces an experimental setup of FMI-ACIT for investigation of the aerosol activation and the droplet growth under supersaturated conditions. Several simulations and experimental tests were conducted to find out what the proper operational parameters are. To verify the ability of FMI-ACIT to perform as a cloud condensation nuclei (CCN) counter, activation experiments were executed using size selected ammonium sulfate [(NH4)(2)SO4] particles in the size range of 10-300 nm. Supersaturations from 0.18% to 1.25% were tested by experiments with different temperature gradients. Those showed that FMI-ACIT can effectively measure CCN in this range. Measured droplet size distributions at supersaturations 0.18% and 1.25% are in good agreement with those determined by a droplet growth model. Published by AIP Publishing.
  • Paramonov, Mikhail; Kerminen, Veli-Matti; Gysel, M.; Aalto, Pasi; Andreae, M. O.; Asmi, E.; Baltensperger, U.; Bougiatioti, A.; Brus, D.; Frank, G. P.; Good, N.; Gunthe, S. S.; Hao, L.; Irwin, M.; Jaatinen, A.; Juranyi, Z.; King, S. M.; Kortelainen, A.; Kristensson, A.; Lihavainen, H.; Kulmala, Markku; Lohmann, U.; Martin, S. T.; McFiggans, G.; Mihalopoulos, N.; Nenes, A.; O'Dowd, C. D.; Ovadnevaite, J.; Petäjä, Tuukka; Poschl, U.; Roberts, G. C.; Rose, D.; Svenningsson, B.; Swietlicki, E.; Weingartner, E.; Whitehead, J.; Wiedensohler, A.; Wittbom, C.; Sierau, B. (2015)
    Cloud condensation nuclei counter (CCNC) measurements performed at 14 locations around the world within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) framework have been analysed and discussed with respect to the cloud condensation nuclei (CCN) activation and hygroscopic properties of the atmospheric aerosol. The annual mean ratio of activated cloud condensation nuclei (N-CCN) to the total number concentration of particles (N-CN), known as the activated fraction A, shows a similar functional dependence on supersaturation S at many locations - exceptions to this being certain marine locations, a free troposphere site and background sites in south-west Germany and northern Finland. The use of total number concentration of particles above 50 and 100 nm diameter when calculating the activated fractions (A(50) and A(100), respectively) renders a much more stable dependence of A on S; A(50) and A(100) also reveal the effect of the size distribution on CCN activation. With respect to chemical composition, it was found that the hygroscopicity of aerosol particles as a function of size differs among locations. The hygroscopicity parameter kappa decreased with an increasing size at a continental site in south-west Germany and fluctuated without any particular size dependence across the observed size range in the remote tropical North Atlantic and rural central Hungary. At all other locations kappa increased with size. In fact, in Hyytiala, Vavihill, Jungfraujoch and Pallas the difference in hygroscopicity between Aitken and accumulation mode aerosol was statistically significant at the 5% significance level. In a boreal environment the assumption of a size-independent kappa can lead to a potentially substantial overestimation of N-CCN at S levels above 0.6 %. The same is true for other locations where kappa was found to increase with size. While detailed information about aerosol hygroscopicity can significantly improve the prediction of N-CCN, total aerosol number concentration and aerosol size distribution remain more important parameters. The seasonal and diurnal patterns of CCN activation and hygroscopic properties vary among three long-term locations, highlighting the spatial and temporal variability of potential aerosol-cloud interactions in various environments.
  • Pajunoja, Aki; Lambe, Andrew T.; Hakala, Jani; Rastak, Narges; Cummings, Molly J.; Brogan, James F.; Hao, Liqing; Paramonov, Mikhail; Hong, Juan; Prisle, Nonne L.; Malila, Jussi; Romakkaniemi, Sami; Lehtinen, Kari E. J.; Laaksonen, Ari; Kulmala, Markku; Massoli, Paola; Onasch, Timothy B.; Donahue, Neil M.; Riipinen, Ilona; Davidovits, Paul; Worsnop, Douglas R.; Petaja, Tuukka; Virtanen, Annele (2015)
    Aerosol climate effects are intimately tied to interactions with water. Here we combine hygroscopicity measurements with direct observations about the phase of secondary organic aerosol (SOA) particles to show that water uptake by slightly oxygenated SOA is an adsorption-dominated process under subsaturated conditions, where low solubility inhibits water uptake until the humidity is high enough for dissolution to occur. This reconciles reported discrepancies in previous hygroscopicity closure studies. We demonstrate that the difference in SOA hygroscopic behavior in subsaturated and supersaturated conditions can lead to an effect up to about 30% in the direct aerosol forcinghighlighting the need to implement correct descriptions of these processes in atmospheric models. Obtaining closure across the water saturation point is therefore a critical issue for accurate climate modeling.
  • Dalirian, M.; Keskinen, H.; Ahlm, L.; Ylisirnio, A.; Romakkaniemi, S.; Laaksonen, A.; Virtanen, A.; Riipinen, I. (2015)
    Particle-water interactions of completely soluble or insoluble particles are fairly well understood but less is known of aerosols consisting of mixtures of soluble and insoluble components. In this study, laboratory measurements were performed to investigate cloud condensation nuclei (CCN) activity of silica particles mixed with ammonium sulfate (a salt), sucrose (a sugar) and bovine serum albumin known as BSA (a protein). The agglomerated structure of the silica particles was investigated using measurements with a differential mobility analyser (DMA) and an aerosol particle mass analyser (APM). Based on these data, the particles were assumed to be compact agglomerates when studying their CCN activation capabilities. Furthermore, the critical super-saturations of particles consisting of pure and mixed soluble and insoluble compounds were explored using existing theoretical frameworks. These results showed that the CCN activation of single-component particles was in good agreement with Kohler- and adsorption theory based models when the agglomerated structure was accounted for. For mixed particles the CCN activation was governed by the soluble components, and the soluble fraction varied considerably with particle size for our wet-generated aerosols. Our results confirm the hypothesis that knowing the soluble fraction is the key parameter needed for describing the CCN activation of mixed aerosols, and highlight the importance of controlled coating techniques for acquiring a detailed understanding of the CCN activation of atmospheric insoluble particles mixed with soluble pollutants.
  • Prisle, Nonne L.; Lin, Jack J.; Purdue, Sara; Lin, Haisheng; Meredith, J. Carson; Nenes, Athanasios (2019)
    The role of surfactants in governing water interactions of atmospheric aerosols has been a recurring topic in cloud microphysics for more than two decades. Studies of detailed surface thermodynamics are limited by the availability of aerosol samples for experimental analysis and incomplete validation of various proposed Kohler model frameworks for complex mixtures representative of atmospheric aerosol. Pollenkitt is a viscous material that coats grains of pollen and plays important roles in pollen dispersion and plant reproduction. Previous work suggests that it may also be an important contributor to pollen water uptake and cloud condensation nuclei (CCN) activity. The chemical composition of pollenkitt varies between species but has been found to comprise complex organic mixtures including oxygenated, lipid, and aliphatic functionalities. This mix of functionalities suggests that pollenkitt may display aqueous surface activity, which could significantly impact pollen interactions with atmospheric water. Here, we study the surface activity of pollenkitt from six different species and its influence on pollenkitt hygroscopicity. We measure cloud droplet activation and concentration-dependent surface tension of pollenkitt and its mixtures with ammonium sulfate salt. Experiments are compared to predictions from several thermodynamic models, taking aqueous surface tension reduction and surfactant surface partitioning into account in various ways. We find a clear reduction of surface tension by pollenkitt in aqueous solution and evidence for impact of both surface tension and surface partitioning mechanisms on cloud droplet activation potential and hygroscopicity of pollenkitt particles. In addition, we find indications of complex nonideal solution effects in a systematic and consistent dependency of pollenkitt hygroscopicity on particle size. The impact of pollenkitt surface activity on cloud microphysics is different from what is observed in previous work for simple atmospheric surfactants and more resembles recent observations for complex primary and secondary organic aerosol, adding new insight to our understanding of the multifaceted role of surfactants in governing aerosol-water interactions. We illustrate how the explicit characterization of pollenkitt contributions provides the basis for modeling water uptake and cloud formation of pollen and their fragments over a wide range of atmospheric conditions.
  • Keskinen, Helmi-Marja; Joutsensaari, J.; Tsagkogeorgas, G.; Duplissy, Jonathan; Schobesberger, S.; Gysel, M.; Riccobono, F.; Slowik, J. G.; Bianchi, F.; Yli-Juuti, T.; Lehtipalo, K.; Rondo, L.; Breitenlechner, M.; Kupc, A.; Almeida, J.; Amorim, A.; Dunne, E. M.; Downard, A. J.; Ehrhart, S.; Franchin, A.; Kajos, M. K.; Kirkby, J.; Kuerten, A.; Nieminen, Tuomo; Makhmutov, V.; Mathot, S.; Onnela, A.; Petäjä, T.; Praplan, A.; Santos, F. D.; Schallhart, S.; Sipilä, M.; Stozhkov, Y.; Tome, A.; Vaattovaara, P.; Wimmer, D.; Prevot, A.; Dommen, J.; Donahue, N. M.; Flagan, R. C.; Weingartner, E.; Viisanen, Y.; Riipinen, I.; Hansel, A.; Curtius, J.; Kulmala, M.; Worsnop, D. R.; Baltensperger, U.; Wex, H.; Stratmann, F.; Laaksonen, A. (2013)
  • Schmale, Julia; Henning, Silvia; Decesari, Stefano; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Poehlker, Mira L.; Brito, Joel; Bougiatioti, Aikaterini; Kristensson, Adam; Kalivitis, Nikos; Stavroulas, Iasonas; Carbone, Samara; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Iwamoto, Yoko; Aalto, Pasi; Äijälä, Mikko; Bukowiecki, Nicolas; Ehn, Mikael; Frank, Goran; Frohlich, Roman; Frumau, Arnoud; Herrmann, Erik; Herrmann, Hartmut; Holzinger, Rupert; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Nenes, Athanasios; O'Dowd, Colin; Petäjä, Tuukka; Picard, David; Poehlker, Christopher; Poeschl, Ulrich; Poulain, Laurent; Prevot, Andre Stephan Henry; Swietlicki, Erik; Andreae, Meinrat O.; Artaxo, Paulo; Wiedensohler, Alfred; Ogren, John; Matsuki, Atsushi; Yum, Seong Soo; Stratmann, Frank; Baltensperger, Urs; Gysel, Martin (2018)
    Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles > 20 nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e. g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, kappa, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on kappa-Kohler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of kappa. The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating "migrating-CCNCs" to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of longterm measurements can be achieved.
  • Rastak, N.; Pajunoja, A.; Navarro, J. C. Acosta; Ma, J.; Song, M.; Partridge, D. G.; Kirkevag, A.; Leong, Y.; Hu, W. W.; Taylor, N. F.; Lambe, A.; Cerully, K.; Bougiatioti, A.; Liu, P.; Krejci, R.; Petäjä, T.; Percival, C.; Davidovits, P.; Worsnop, D. R.; Ekman, A. M. L.; Nenes, A.; Martin, S.; Jimenez, J. L.; Collins, D. R.; Topping, D. O.; Bertram, A. K.; Zuend, A.; Virtanen, A.; Riipinen, I. (2017)
    A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient data with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources. Plain Language Summary The interaction of airborne particulate matter ("aerosols") with water is of critical importance for processes governing climate, precipitation, and public health. It also modulates the delivery and bioavailability of nutrients to terrestrial and oceanic ecosystems. We present a microphysical explanation to the humidity-dependent water uptake behavior of organic aerosol, which challenges the highly simplified theoretical descriptions used in, e.g., present climate models. With the comprehensive analysis of laboratory data using molecular models, we explain the microphysical behavior of the aerosol over the range of humidity observed in the atmosphere, in a way that has never been done before. We also demonstrate the presence of these phenomena in the ambient atmosphere from data collected in the field. We further show, using two state-of-the-art climate models, that misrepresenting the water affinity of atmospheric organic aerosol can lead to significant biases in the estimates of the anthropogenic influence on climate.
  • Yli-Juuti, Taina; Zardini, Alessandro A.; Eriksson, Axel C.; Hansen, Anne Maria K.; Pagels, Joakim H.; Swietlicki, Erik; Svenningsson, Birgitta; Glasius, Marianne; Worsnop, Douglas R.; Riipinen, Ilona; Bilde, Merete (2013)