Browsing by Subject "Herbivory"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Kovalchuk, Andriy; Raffaello, Tommaso; Jaber, Emad; Keriö, Susanna; Ghimire, Rajendra; Lorenz, W. Walter; Dean, Jeffrey F. D.; Holopainen, Jarmo K.; Asiegbu, Fred O. (2015)
    Background: During their lifetime, conifer trees are exposed to numerous herbivorous insects. To protect themselves against pests, trees have developed a broad repertoire of protective mechanisms. Many of the plant's defence reactions are activated upon an insect attack, and the underlying regulatory mechanisms are not entirely understood yet, in particular in conifer trees. Here, we present the results of our studies on the transcriptional response and the volatile compounds production of Scots pine (Pinus sylvestris) upon the large pine weevil (Hylobius abietis) feeding. Results: Transcriptional response of Scots pine to the weevil attack was investigated using a novel customised 36.4 K Pinus taeda microarray. The weevil feeding caused large-scale changes in the pine transcriptome. In total, 774 genes were significantly up-regulated more than 4-fold (p = 0.05), whereas 64 genes were significantly down-regulated more than 4-fold. Among the up-regulated genes, we could identify genes involved in signal perception, signalling pathways, transcriptional regulation, plant hormone homeostasis, secondary metabolism and defence responses. The weevil feeding on stem bark of pine significantly increased the total emission of volatile organic compounds from the undamaged stem bark area. The emission levels of monoterpenes and sesquiterpenes were also increased. Interestingly, we could not observe any correlation between the increased production of the terpenoid compounds and expression levels of the terpene synthase-encoding genes. Conclusions: The obtained data provide an important insight into the transcriptional response of conifer trees to insect herbivory and illustrate the massive changes in the host transcriptome upon insect attacks. Moreover, many of the induced pathways are common between conifers and angiosperms. The presented results are the first ones obtained by the use of a microarray platform with an extended coverage of pine transcriptome (36.4 K cDNA elements). The platform will further facilitate the identification of resistance markers with the direct relevance for conifer tree breeding.
  • Koski, Tuuli-Marjaana; Kalpio, Marika; Laaksonen, Toni; Sirkiä, Päivi; Kallio, Heikki P.; Yang, Baoru; Linderborg, Kaisa M.; Klemola, Tero (2017)
    The evolutionary purpose of a fleshy fruit is to attract seed dispersers and get the seeds dispersed by frugivorous animals. For this reason, fruits should be highly rewarding to these mutualists. However, insect herbivory can alter plant reproductive success e.g. by decreasing fruit yield or affecting the attractiveness of the fruits to mutualistic seed dispersers. Under natural conditions, we tested the effects of experimental larval-defoliation on berry ripening and consumption of a non-cultivated dwarf shrub, the bilberry (Vaccinium myrtillus L.), which produces animal-dispersed berries with high sugar and anthocyanin concentration. Bilberry ramets with high fruit yield were most likely to have their berries foraged, indicating that frugivores made foraging choices based on the abundance of berries. Moreover, the probability for berries being foraged was the lowest for non-defoliated ramets that grew adjacent to larval-defoliated ramets, even though larval-defoliation did not affect the biochemical composition (total concentrations of anthocyanins, sugars and organic acids) or the probability of ripening of berries. We hypothesise that the lower probability for berries being foraged in these ramets may be a consequence of rhizome- or volatile-mediated communication between ramets, resulting in a priming effect of the herbivore defence and lower attractiveness of the non-defoliated ramets.
  • Mikola, Juha; Koikkalainen, Katariina; Rasehorn, Mira; Silfver, Tarja; Paaso, Ulla; Rousi, Matti (2021)
    Fast-growing and slow-growing plant species are suggested to show integrated economics spectrums and the tradeoffs of fast growth are predicted to emerge as susceptibility to herbivory and resource competition. We tested if these predictions also hold for fast-growing and slow-growing genotypes within a silver birch, Betula pendula population. We exposed cloned saplings of 17 genotypes with slow, medium or fast height growth to reduced insect herbivory, using an insecticide, and to increasing resource competition, using naturally varying field plot grass cover. We measured shoot and root growth, ectomycorrhizal (EM) fungal production using ergosterol analysis and soil N transfer to leaves using N-15-labelled pulse of NH4+. We found that fast-growing genotypes grew on average 78% faster, produced 56% and 16% more leaf mass and ergosterol, and showed 78% higher leaf N uptake than slow-growing genotypes. The insecticide decreased leaf damage by 83% and increased shoot growth, leaf growth and leaf N uptake by 38%, 52% and 76%, without differences between the responses of fast-growing and slow-growing genotypes, whereas root mass decreased with increasing grass cover. Shoot and leaf growth of fast-growing genotypes decreased and EM fungal production of slow-growing genotypes increased with increasing grass cover. Our results suggest that fast growth is genotypically associated with higher allocation to EM fungi, better soil N capture and greater leaf production, and that the tradeoff of fast growth is sensitivity to competition, but not to insect herbivory. EM fungi may have a dual role: to support growth of fast-growing genotypes under low grass competition and to maintain growth of slow-growing genotypes under intensifying competition.
  • Pöysä, Hannu; Elmberg, Johan; Gunnarsson, Gunnar; Holopainen, Sari Taija; Nummi, Petri Johannes; Sjöberg, Kjell (2018)
    The Whooper Swan (Cygnus cygnus) is a good example of successful conservation, with rapidly growing numbers in Fennoscandia in recent decades. To the contrary, Eurasian Wigeon (Mareca penelope) shows a strong negative trend in breeding numbers, which raises conservation concerns. Previous research suggests a causal link between recent population trajectories of the two species. Both preferentially breed on wetlands with abundant horsetail (Equisetum spp.), a plant providing food for Whooper Swan and crucial feeding microhabitat for Eurasian Wigeon broods. We here test predictions based on the hypothesis that grazing on Equisetum by Whooper Swan reduces breeding habitat or breeding habitat quality for Eurasian Wigeon. We use data from 60 lakes in which waterfowl were counted in 1990-1991 and 2016, and Equisetum was mapped in 1990-1991 and 2013-2014. Lakes colonized by Whooper Swan typically had more abundant Equisetum vegetation in the past than lakes not colonized. Lake-specific decrease of Equisetum was not associated with colonization by Whooper Swan. The number of lakes occupied by Eurasian Wigeon decreased, but the decrease was not stronger on lakes colonized by Whooper Swan than on those that were not. Contrary to our prediction, current Eurasian Wigeon abundance was positively associated with Whooper Swan abundance. Moreover, Eurasian Wigeon did not decrease more on lakes from which Equisetum disappeared than on lakes in which there was still Equisetum left. This study does not support the idea that Whooper Swan affects Eurasian Wigeon negatively by grazing on Equisetum.
  • Majaneva, Markus; Blomster, Jaanika; Mueller, Susann; Autio, Riitta; Majaneva, Sanna; Hyytiainen, Kirsi; Nagai, Satoshi; Rintala, Janne-Markus (2017)
    To determine community composition and physiological status of early spring sea-ice organisms, we collected sea-ice, slush and under-ice water samples from the Baltic Sea. We combined light microscopy, HPLC pigment analysis and pyrosequencing, and related the biomass and physiological status of sea-ice algae with the protistan community composition in a new way in the area. In terms of biomass, centric diatoms including a distinct Melosira arctica bloom in the upper intermediate section of the fast ice, dinoflagellates, euglenoids and the cyanobacterium Aphanizomenon sp. predominated in the sea-ice sections and unidentified flagellates in the slush. Based on pigment analyses, the ice-algal communities showed no adjusted photosynthetic pigment pools throughout the sea ice, and the bottom-ice communities were not shade-adapted. The sea ice included more characteristic phototrophic taxa (49%) than did slush (18%) and under-ice water (37%). Cercozoans and ciliates were the richest taxon groups, and the differences among the communities arose mainly from the various phagotrophic protistan taxa inhabiting the communities. The presence of pheophytin a coincided with an elevated ciliate biomass and read abundance in the drift ice and with a high Eurytemora affinis read abundance in the pack ice, indicating that ciliates and Eurytemora affinis were grazing on algae. (C) 2016 Elsevier GmbH. All rights reserved.