Browsing by Subject "Heterobasidion"

Sort by: Order: Results:

Now showing items 1-11 of 11
  • Ren, Wenzi; Penttilä, Reijo; Kasanen, Risto; Asiegbu, Fred (2022)
    The microbiome of Heterobasidion-induced wood decay of living trees has been previously studied; however, less is known about the bacteria biota of its perennial fruiting body and the adhering wood tissue. In this study, we investigated the bacteria biota of the Heterobasidion fruiting body and its adhering deadwood. Out of 7,462 operational taxonomic units (OTUs), about 5,918 OTUs were obtained from the fruiting body and 5,469 OTUs were obtained from the associated dead wood. Interestingly, an average of 52.6% of bacteria biota in the fruiting body was shared with the associated dead wood. The overall and unique OTUs had trends of decreasing from decay classes 1 to 3 but increasing in decay class 4. The fruiting body had the highest overall and unique OTUs number in the fourth decay class, whereas wood had the highest OTU in decay class 1. Sphingomonas spp. was significantly higher in the fruiting body, and phylum Firmicutes was more dominant in wood tissue. The FAPROTAX functional structure analysis revealed nutrition, energy, degradation, and plant-pathogen-related functions of the communities. Our results also showed that bacteria communities in both substrates experienced a process of a new community reconstruction through the various decay stages. The process was not synchronic in the two substrates, but the community structures and functions were well-differentiated in the final decay class. The bacteria community was highly dynamic; the microbiota activeness, community stability, and functions changed with the decay process. The third decay class was an important turning point for community restructuring. Host properties, environmental factors, and microbial interactions jointly influenced the final community structure. Bacteria community in the fruiting body attached to the living standing tree was suppressed compared with those associated with dead wood. Bacteria appear to spread from wood tissue of the standing living tree to the fruiting body, but after the tree is killed, bacteria moved from fruiting body to wood. It is most likely that some of the resident endophytic bacteria within the fruiting body are either parasitic, depending on it for their nutrition, or are mutualistic symbionts.
  • Kovalchuk, Andriy; Zeng, Zhen; Ghimire, Rajendra P.; Kivimäenpää, Minna; Raffaello, Tommaso; Liu, Mengxia; Mukrimin, Mukrimin; Kasanen, Risto Aarne Olavi; Sun, Hui; Julkunen-Tiitto, Riitta; Holopainen, Jarmo K.; Asiegbu, Frederick Obioma (2019)
    BackgroundRoot and butt rot of conifer trees caused by fungi belonging to the Heterobasidion annosum species complex is one of the most economically important fungal diseases in commercial conifer plantations throughout the Northern hemisphere. We investigated the interactions between Heterobasidion fungi and their host by conducting dual RNA-seq and chemical analysis on Norway spruce trees naturally infected by Heterobasidion spp. We analyzed host and pathogen transcriptome and phenolic and terpenoid contents of the spruce trees.ResultsPresented results emphasize the role of the phenylpropanoid and flavonoid pathways in the chemical defense of Norway spruce trees. Accumulation of lignans was observed in trees displaying symptoms of wood decay. A number of candidate genes with a predicted role in the higher level regulation of spruce defense responses were identified. Our data indicate a possible role of abscisic acid (ABA) signaling in the spruce defense against Heterobasidion infection. Fungal transcripts corresponding to genes encoding carbohydrate- and lignin-degrading enzymes, secondary metabolism genes and effector-like genes were expressed during the host colonization.ConclusionsOur results provide additional insight into defense strategies employed by Norway spruce trees against Heterobasidion infection. The potential applications of the identified candidate genes as markers for higher resistance against root and butt rot deserve further evaluation.
  • Kovalchuk, Andriy; Zeng, Zhen; Ghimire, Rajendra P; Kivimäenpää, Minna; Raffaello, Tommaso; Liu, Mengxia; Mukrimin, Mukrimin; Kasanen, Risto; Sun, Hui; Julkunen-Tiitto, Riitta; Holopainen, Jarmo K; Asiegbu, Fred O. (BioMed Central, 2019)
    Abstract Background Root and butt rot of conifer trees caused by fungi belonging to the Heterobasidion annosum species complex is one of the most economically important fungal diseases in commercial conifer plantations throughout the Northern hemisphere. We investigated the interactions between Heterobasidion fungi and their host by conducting dual RNA-seq and chemical analysis on Norway spruce trees naturally infected by Heterobasidion spp. We analyzed host and pathogen transcriptome and phenolic and terpenoid contents of the spruce trees. Results Presented results emphasize the role of the phenylpropanoid and flavonoid pathways in the chemical defense of Norway spruce trees. Accumulation of lignans was observed in trees displaying symptoms of wood decay. A number of candidate genes with a predicted role in the higher level regulation of spruce defense responses were identified. Our data indicate a possible role of abscisic acid (ABA) signaling in the spruce defense against Heterobasidion infection. Fungal transcripts corresponding to genes encoding carbohydrate- and lignin-degrading enzymes, secondary metabolism genes and effector-like genes were expressed during the host colonization. Conclusions Our results provide additional insight into defense strategies employed by Norway spruce trees against Heterobasidion infection. The potential applications of the identified candidate genes as markers for higher resistance against root and butt rot deserve further evaluation.
  • Ahokas, Aarne (Helsingin yliopisto, 2022)
    The root rot fungus Heterobasidion annosum is one of the worst conifer pathogens in the boreal forests. Root diseases decrease forest growth, and their abundance could increase with climate change. Disease can reduce the carbon stored into forests even more than wildfires or pest outbreaks, further impacting the climate. Widespread Heterobasidion root rot can develop within the stem of susceptible trees without external symptoms. Therefore, research on the pathogen is difficult on a large extent and its dynamics at the landscape level could be researched with models. A model may be used to understand a system better or to predict its behaviour. Random maps are neutral landscape models, and they are not always significantly different from real random landscapes, except that things shaping real landscapes, such as waterways, human activities, or topography, are missing and the focus is on map cells representing habitats, their occupancy and connectivity across the landscape. Neutral landscape models are an application of percolation theory within landscape ecology; therefore, the connectivity and randomness are important. Heterobasidion spread by sporulation at the landscape level is of interest, as the focus of research has been on the spread by root contacts. In this study, simulations made with Motti and iLand software are compared, the effects of Heterobasidion spread on the dimensional variables of trees at the landscape level are evaluated, and the effects of various maximum dispersal distances on the number of new Heterobasidion colonies and the tree volume per hectare are studied. Forest growth and management practices were simulated with the Motti software, forest dynamics were simulated with the iLand software that uses a neutral landscape model, and Heterobasidion dynamics were simulated with the BITE modelling framework that was connected to iLand for the vegetation and environmental data. Betula pendula had a trend of underestimated values of the dimensional variables except for the basal area in iLand when compared to Motti. There was no clear trend for Picea abies or Pinus sylvestris. Overall, the change in basal area was overestimated the most and height was the most underestimated variable by iLand. A single dimensional variable could have different trends during a forest growth cycle in Motti and iLand. The effect of Heterobasidion on the dimensions of trees at the landscape level was minimal. Larger maximum dispersal distances resulted in more Heterobasidion colonies than shorter distances.
  • Mukrimin, Mukrimin; Kovalchuk, Andriy; Ghimire, Rajendra P.; Kivimaenpaa, Minna; Sun, Hui; Holopainen, Jarmo K.; Asiegbu, Fred O. (2019)
    Main conclusion Two terpene compounds and four genes were identified as potential biomarkers for further evaluation for Scots pine susceptibility or tolerance against Heterobasidion annosum. Scots pine (Pinus sylvestris) is one of the main sources of timber in the boreal zone of Eurasia. Commercial pine plantations are vulnerable to root and butt rot disease caused by the fungus Heterobasidion annosum. The pathogen affects host growth rate, causes higher mortality and decreases in timber quality, resulting in considerable economic losses to forest owners. Genetic and biochemical factors contributing to Scots pine tolerance against H. annosum infection are not well understood. We assessed the predictive values of a set of potential genetic and chemical markers in a field experiment. We determined the expression levels of 25 genes and the concentrations of 36 terpenoid compounds in needles of 16 Scots pine trees randomly selected from a natural population prior to artificial infection. Stems of the same trees were artificially inoculated with H. annosum, and the length of necrotic lesions was documented 5 months post inoculation. Higher expression level of four genes included in our analysis and encoding predicted alpha-pinene synthase (two genes), geranyl diphosphate synthase (GPPS), and metacaspase 5 (MC5), could be associated with trees exhibiting increased levels of necrotic lesion formation in response to fungal inoculation. In contrast, concentrations of two terpenoid compounds, beta-caryophyllene and alpha-humulene, showed significant negative correlations with the lesion size. Further studies with larger sample size will help to elucidate new biomarkers or clarify the potential of the evaluated markers for use in Scots pine disease resistance breeding programs.
  • Mukrimin, Mukrimin; Conrad, Anna O.; Kovalchuk, Andriy; Julkunen-Tiitto, Riitta; Bonello, Pierluigi; Asiegbu, Fred O. (2019)
    Conifer trees, including Norway spruce, are threatened by fungi of the Heterobasidion annosum species complex, which severely affect timber quality and cause economic losses to forest owners. The timely detection of infected trees is complicated, as the pathogen resides within the heartwood and sapwood of infected trees. The presence of the disease and the extent of the wood decay often becomes evident only after tree felling. Fourier-transform infrared (FT-IR) spectroscopy is a potential method for non-destructive sample analysis that may be useful for identifying infected trees in this pathosystem. We performed FT-IR analysis of 18 phloem, 18 xylem, and 18 needle samples from asymptomatic and symptomatic Norway spruce trees. FT-IR spectra from 1066 – 912 cm−1 could be used to distinguish phloem, xylem, and needle tissue extracts. FT-IR spectra collected from xylem and needle extracts could also be used to discriminate between asymptomatic and symptomatic trees using spectral bands from 1657 – 994 cm−1 and 1104 – 994 cm−1, respectively. A partial least squares regression model predicted the concentration of condensed tannins, a defense-related compound, in phloem of asymptomatic and symptomatic trees. This work is the first to show that FT-IR spectroscopy can be used for the identification of Norway spruce trees naturally infected with Heterobasidion spp.
  • Mukrimin, Mukrimin; Kovalchuk, Andriy; Neves, Leandro G.; Jaber, Emad H. A.; Haapanen, Matti; Kirst, Matias; Asiegbu, Fred O. (2018)
    Root and butt rot caused by members of the Heterobasidion annosum species complex is the most economically important disease of conifer trees in boreal forests. Wood decay in the infected trees dramatically decreases their value and causes considerable losses to forest owners. Trees vary in their susceptibility to Heterobasidion infection, but the genetic determinants underlying the variation in the susceptibility are not well-understood. We performed the identification of Norway spruce genes associated with the resistance to Heterobasidion parviporum infection using genome-wide exon-capture approach. Sixty-four clonal Norway spruce lines were phenotyped, and their responses to H. parviporum inoculation were determined by lesion length measurements. Afterwards, the spruce lines were genotyped by targeted resequencing and identification of genetic variants (SNPs). Genome-wide association analysis identified 10 SNPs located within 8 genes as significantly associated with the larger necrotic lesions in response to H. parviporum inoculation. The genetic variants identified in our analysis are potential marker candidates for future screening programs aiming at the differentiation of disease-susceptible and resistant trees.
  • Palmberg, Christel (Suomen metsätieteellinen seura, 1969)
  • Hristozova, Nevena (Helsingfors universitet, 2012)
    The white rot fungus Heterobasidion annosum s.l. is a basidiomycete which is considered to be the most economical important pathogen of conifer trees (Pinus, Picea and Abies) in the northern hemisphere. Presently, the knowledge on the biology and molecular aspects of the Heterobasidion pathosystem is still poor and this is the major set-back in preventing the spread of the pathogen. A deeper investigation at the molecular level of the pathogenicity factors involved during the infection process is very important to better control the disease. Intra-cellular signal-transduction pathways, and in particular the Mitogen Activated Protein Kinases (MAPKs), have been shown to play key roles in the infection cycle in many fungal pathogens, being pivotal in survival, appressorial formation, sporulation and response to various biotic and abiotic stresses. The aim of this study is to characterize a specific H. annosum MAPK, with high sequence homology to FUS3 gene (involved in mating) in S. cerevisiae and with PMK1 gene (involved in appressoria formation) in Magnaporthe grisea. In order to study the function of this MAPK in H. annosum, we performed a complementation experiment in the S. cerevisiae fus3?? mutant. Expression level profiles, proteomics and immunology studies were used to distinguish between phosphorylated/active and non-phosphorylated/inactive form of the MAPK. Some valuable insights on this kinase cascade in Heterobasidion were discovered, but further studies are required to fully understand its role in the lifecycle of this fungus.
  • Hanström, Neea (Helsingin yliopisto, 2022)
    Heterobasidion genus fungi are the most significant pathogens in Finland causing root rot. These fungi infect Norway spruce (Picea abies), causing wood deficit in the forest industry. Leucoanthosyanidin reductase enzyme encoding gene, PaLAR3, has been linked in to the resistance of Norway spruce against H.parviporum induced root rot infections. The alleles in this locus can be AA, AB or BB, and the enzyme production and (+)-catechin concentrations have been proven to be higher in inoculation experiments in individuals with B allele present in their PaLAR3 locus. Climate change is predicted to increase disturbances in not only on the hydrological cycles, but also on the weather conditions. The drought is predicted to increase in the Northern hemisphere, increasing the risk of pathogens to spread into new areas. Forest breeding programs aim to make the forests more profitable and productive in the future as well. By studying the genetics of Norway spruce, it is possible to add more resilient individuals into the breeding program, to tackle the climate challenges the future might hold. In this Master’s thesis the spreading of the root rot infection under drought stress was studied. The PaLAR3 alleles were determined, and the area of necrosis caused by the fungal infection was compared against the alleles, watering treatments and the fungal strain used in the inoculations. Regarding the results the alleles in an individual’s PaLAR3 locus did not have any effect on the area of the necrosis. There were no statistically significant differences between the watering treatments. The only statistically significant result was that the different fungal strains’ (Hpa1 and Hpa2) infectiveness varied between different watering treatments. This is probably due to the different routes of pathogenesis. Hpa2 strain seems to be more infective in normal watering conditions. However, considering these results the PaLAR3 gene should not be added into the forest breeding program as itself. In the future, the research should focus more on gene interactions, since also other genes (e.g., PaLAC5) have been linked in the resistance against root rot infections in Norway spruce. By studying these genes together, the solutions for the deteriorating situation of the spreading of the fungal diseases could be discovered.
  • Rainio, Pauli (Helsingfors universitet, 2013)
    In Norway spruce (Picea abies) dominated mineral soil sites, the polypore Heterobasidion parviporum often causes severe decay problems (butt rot, root rot). Not much is however known on the ability of H. parviporum to cause decay losses in peatland. The purpose of this study was to answer some fundamental question: 1) Is H. parviporum able to cause decay losses in drained mires? 2) Is there an effect of other soil microbes during saprotrophic growth of Heterobasidion on peat soil? 3) What are the potential inhibitory effects of microbes inhabiting peat soil on growth of Heterobasidion? For the decay study, wood discs (P. abies) in mesh bags were buried at the different forest sites; mineral soil and peatlands (including drained mire and undrained mire). The amount of weight loss was documented after four months. The study was repeated in vitro by autoclaving soil samples from these sites together with wood discs followed by inoculation with H. parviporum. On mineral soil, H. parviporum decayed spruce (P. abies) wood disc much more than on non-drained pristine mire. On drained (ditched) mire, no significant difference in the weight loss was observed. H. parviporum grew significantly more on the sterilized soil and decayed more wood, compared to non-sterilized soil. The results suggested that secreted metabolites in the unsterilized soil may be able to significantly suppress saprotrophic growth of H. parviporum. In the fungal growth inhibition experiment, water- and acetone-soluble substances were extracted from the soil with acetone and water. No fungal growth inhibiting substances were detected from the various peat soils or mineral soils.