Browsing by Subject "Holocene"

Sort by: Order: Results:

Now showing items 1-18 of 18
  • Lucke, Bernhard; Roskin, Joel; Vanselow, Kim André; Bruins, Hendrik; Abu-Jaber, Nizar; Deckers, Katleen; Lindauer, Susanne; Porat, Naomi; Reimer, Paula J.; Bäumler, Rupert; Erickson-Gini, Tali; Kouki, Paula (2019)
    Loess accumulated in the Negev desert during the Pleistocene and primary and secondary loess remains cover large parts of the landscape. Holocene loess deposits are however absent. This could be due low accumulation rates, lack of preservation, and higher erosion rates in comparison to the Pleistocene. This study hypothesized that archaeological ruins preserve Holocene dust. We studied soils developed on archaeological hilltop ruins in the Negev and the Petra region and compared them with local soils, paleosols, geological outcrops, and current dust. Seven statistically modeled grain size end-members were identified and demonstrate that the ruin soils in both regions consist of mixtures of local and remote sediment sources that differ from dust compositions deposited during current storms. This discrepancy is attributed to fixation processes connected with sediment-fixing agents such as vegetation, biocrusts, and/or clast pavements associated with vesicular layers. Average dust accretion rates in the ruins are estimated to be similar to 0.14 mm/a, suggesting that similar to 30% of the current dust that can be trapped with dry marble dust collectors has been stored in the ruin soils. Deposition amounts and grain sizes do not significantly correlate with wind intensity. However, precipitation may have contributed to dust accretion. A snowstorm in the Petra region delivered a significantly higher amount of sediment than rain or dry deposition. Snowfall dust had a unique particle size distribution relatively similar to the ruin soils. Wet deposition and snow might catalyze dust deposition and enhance fixation by fostering vegetation and crust formation. More frequent snowfall during the Pleistocene may have been an important mechanism of primary loess deposition in the southern Levant.
  • Lucke, Bernhard; Sandler, Amir; Vanselow, Kim André; Bruins, Hendrik J.; Abu-Jaber, Nizar; Baeumler, Rupert; Porat, Naomi; Kouki, Paula (2019)
    Archaeological structures are often filled with sediments and may serve as effective dust traps. The physical parameters and chemical composition of archaeological soils in hilltop ruins, ancient runoff-collecting terraces, and cleanout spoils of cisterns were determined in the Petra region in southern Jordan and the Northern Negev in Israel. Different types of ruins are characterized by certain soil structures, but could not be distinguished with regard to substrate composition. This reflects a predominance of aeolian processes for primary sedimentation, while fluvial processes seem to only re-distribute aeolian material. In the Petra region, the physical and chemical properties of all archaeological soils show a significant local contribution from associated weathered rocks. Compared to modern settled dust, archaeological soils in Southern Jordan are enriched with various major and trace elements associated with clays and oxide coatings of fine silt particles. This seems connected with preferential fixation of silt and clay by surface crusts, and a role of moisture in sedimentation processes as calcareous silt was found to be deposited in greater amounts when associated with precipitation. In contrast, the contribution of rocks is negligible in the Negev due to greater rock hardness and abundant biological crusts that seal surfaces. Archaeological soils in the Negev are chemically similar to current settled dust, which consists of complex mixtures of local and remote sources, including significant portions of recycled material from paleosols. Archaeological soils are archives of Holocene dust sources and aeolian sedimentation processes, with accretion rates exceeding those of Pleistocene hilltop loess in the Negev. Comparison with Pleistocene paleosols suggests that dust sources did not change significantly, but disappearance of snow could have reduced dust accumulation during the Holocene.
  • Helama, Samuli; Herva, Hannu; Arppe, Laura; Gunnarson, Björn; Frank, Thomas; Holopainen, Jari; Nöjd, Pekka; Mäkinen, Harri; Mielikäinen, Kari; Sutinen, Raimo; Timonen, Mauri; Uusitalo, Joonas; Oinonen, Markku (2022)
    Tree-ring records constitute excellent high-resolution data and provide valuable information for climate science and paleoclimatology. Tree-ring reconstructions of past temperature variations agree to show evidence for annual-to-centennial anomalies in past climate and place the industrial-era warming in the context of the late Holocene climate patterns and regimes. Despite their wide use in paleoclimate research, however, tree rings have also been deemed unsuitable as low-frequency indicators of past climate. The arising debate concerns whether the millennia-long tree-ring records show signals of orbital forcing due to the Milankovitch cycles. Here, we produce a summer-temperature reconstruction from tree-ring chronology running through mid- and late-Holocene times (since 5486 BCE) comprising minimum blue channel light intensity (BI). The BI reconstruction correlates with existing and new tree-ring chronologies built from maximum latewood density (MXD) and, unlike the MXD data, shows temperature trends on Milankovitch scales comparable to various types of sedimentary proxy across the circumpolar Arctic. Our results demonstrate an unrevealed potential of novel, unconventional tree-ring variables to contribute to geoscience and climate research by their capability to provide paleoclimate estimates from inter-annual scales up to those relevant to orbital forcing.
  • Luoto, Tomi P.; Kotrys, Bartosz; Plociennik, Mateusz (2019)
    Understanding local patterns and large-scale processes in past climate necessitates a detailed network of temperature reconstructions. In this study, a merged temperature inference model using fossil chironomid (Diptera: Chironomidae) datasets from Finland and Poland was constructed to fill the lack of an applicable training set for East European sites. The developed weighted averaging partial least squares (WA-PLS) inference model showed favorable performance statistics, suggesting that the model can be useful for downcore reconstructions. The combined calibration model includes 212 sites, 142 taxa, and a temperature gradient of 11.3-20.1 degrees C. The 2-component WA-PLS model has a cross-validated coefficient of determination of 0.88 and a root mean squared prediction error of 0.88 degrees C. We tested the new East European temperature transfer function in chironomid stratigraphies from a Finnish high-resolution short-core sediment record and a Polish paleolake (Zabieniec) covering the past similar to 20 000 yr. In the Finnish site, the chironomid-inferred temperatures correlated closely with the observed instrumental temperatures, showing improved accuracy compared to estimates by the original Finnish calibration model. In addition, the long-core reconstruction from the Polish site showed logical results in its general trends compared to existing knowledge on the past regional climate trends; however, it had distinct differences when compared with hemispheric climate oscillations. Hence, based on these findings, the new temperature model will enable more detailed examination of long-term temperature variability in Eastern Europe, and consequently, reliable identification of local and regional climate variability of the past.
  • Laakso, Jyri (Helsingin yliopisto, 2020)
    Subsurface sediments were investigated by radar acquisition campaigns and sedimentological investigations in Kersilö area, Sodankylä, central Finnish Lapland, in order to provide information about the sedimentology and stratigraphy of the area, and to construct the succession of events related to the glacial and postglacial development of the subsurface sediments. The study area covers an about 150 km2 area around Kitinen river. The subsurface is controlled by unconsolidated coarse-grained sediments with a mean grain-size ranging from sand to gravel. Typical thickness of the overburden varies from 5 to 15 metres, exceeding 20 metres in places. Eastern part of the study area is covered by Holocene peat of Viiankiaapa mire, underlain by clastic sorted sediments and till. Eastern river bank is characterized by sorted sediments interpreted to represent an ancient braided-river environment. Western side of the river presents extensive sorted sediment deposits, interpreted to represent extramarginal-outwash and braided-river sediments. Till beds are more dominant in the western side of the river. Stratigraphy of the Kärväsniemi test site comprises three sandy till beds, estimated to represent Early, Middle and Late Weichselian glaciations. The till units are interbedded by more sorted fluvial sediments, estimated to have Early and Middle Weichselian and Holocene origin. Absolute age determinations from the middle sorted sediment assemblage suggests Odderade Interstadial between the Early and Middle Weichselian glaciations. Ground penetrating radar, utilising 50 MHz and 100 MHz antennas, proves its suitability for investigation of fluvial deposits of a proglacial environment, with abundant coarse-grained sediments. Quality of the data enables identification of lithological interfaces within and between sediment units. Seven radar facies and facies associations are identified, and classified as organic, glacial and fluvial sediments. Fluvial sediments include five radar facies and facies associations characteristic of fluvial deposits. The sediments indicate a succession where glacial deposits alternate with fluvial sorted sediments indicating ice-free events. Fluvial activity is estimated to have been repetitious and especially intensive during the last deglaciation, possibly causing partial erosion of the till beds. Formation of organic peat started in the area after the final retreat of the Scandinavian Ice Sheet. Clastic surface sediments indicating deglacial to Holocene origin have experienced partial reworking by wind and floodwaters.
  • Väliranta, Minna; Salojärvi, Niina; Vuorsalo, Annina; Juutinen, Sari; Korhola, Atte; Luoto, Miska; Tuittila, Eeva-Stiina (2017)
    Minerotrophic fens and ombrotrophic bogs differ in their nutrient status, hydrology, vegetation and carbon dynamics, and their geographical distribution is linked to various climate parameters. Currently, bogs dominate the northern temperate and southern boreal zones but climate warming may cause a northwards shift in the distribution of the bog zone. To more profoundly understand the sensitivity of peatlands to changes in climate, we first used the plant macrofossil method to identify plant communities that are characteristic of past fen-bog transitions. These transitions were radiocarbon dated, to be linked to Holocene climate phases. Subsequently, palaeoecological data were combined with an extensive vegetation survey dataset collected along the current fen-bog ecotone in Finland where we studied how the distribution of the key plant species identified from peat records is currently related to the most important environmental variables. The fossil plant records revealed clear successional phases: an initial Carex-dominated fen phase, an Eriophorum vaginatum-dominated oligotrophic fen phase followed by an early bog phase with wet bog Sphagna. This was occasionally followed by a dry ombrotrophic bog phase. Timing of initiation and phase transitions, and duration of succession phases varied between three sites studied. However, the final ombrotrophication occurred during 2000-3000 cal. BP corresponding to the neoglacial cooling phase. Dry mid-Holocene seems to have facilitated initiation of Eriophorum fens. The peatlands surveyed in the fen-bog ecotone were classified into succession phases based on the key species distribution. In 33% of the studied peatlands, Sphagnum had taken over and we interpret they are going through a final transition from fen to bog. In addition to autogenic processes and direct climate impact, our results showed that ecosystem shifts are also driven by allogenic disturbances, such as fires, suggesting that climate change can indirectly assist the ombrotrophication process in the southern border of the fen-bog ecotone.
  • Alenius, Teija Helena; Gerasimov, Dmitry; Sapelko, Tatiana V; Ludikova, Anna; Kuznetsov, Denis; Golyeva, A; Nordqvist, Kerkko (2020)
    This paper presents the results of pollen, diatom, charcoal, and sediment analyses from Lake Bol'shoye Zavetnoye, situated between the Gulf of Finland and Lake Ladoga on the Karelian Isthmus, north-western Russia. The main goal is to contribute to the discussion of Neolithic land use in north-eastern Europe. The article aims to answer questions related to Stone Age hunter-gatherer economy, ecology, and anthropogenic environmental impact through a comprehensive combination of multiple types of palaeoecological data and archaeological material. According to diatom data, Lake Bol'shoye Zavetnoye was influenced by the water level oscillations of Ancient Lake Ladoga during much of the Holocene. Intensified human activity and prolonged human occupation become visible in the Lake Bol'shoye Zavetnoye pollen data between 4480 BC and 3250 BC. During the final centuries of the Stone Age, a new phase of land use began, as several anthropogenic indicators, such asTriticum, Cannabis, andPlantago lanceolataappear in the pollen data and a decrease inPinusvalues is recorded. In general, the results indicate that socio-cultural transformations could have taken place already from the mid-5th millennium BC onwards, including new ways of utilizing the environment, perhaps also in the field of subsistence, even though the livelihood was based on foraging throughout the period.
  • Mathijssen, Paul J. H.; Tuovinen, Juha-Pekka; Lohila, Annalea; Väliranta, Minna; Tuittila, Eeva-Stiina (2022)
    Reconstructions of past climate impact, that is, radiative forcing (RF), of peatland carbon (C) dynamics show that immediately after peatland initiation the climate warming effect of CH4 emissions exceeds the cooling effect of CO2 uptake, but thereafter the net effect of most peatlands will move toward cooling, when RF switches from positive to negative. Reconstructing peatland C dynamics necessarily involves uncertainties related to basic assumptions on past CO2 flux, CH4 emission and peatland expansion. We investigated the effect of these uncertainties on the RF of three peatlands, using either apparent C accumulation rates, net C balance (NCB) or NCB plus C loss during fires as basis for CO2 uptake estimate; applying a plausible range for CH4 emission; and assuming linearly interpolated expansion between basal dates or comparatively early or late expansion. When we factored that some C would only be stored temporarily (NCB and NCB+fire), the estimated past cooling effect of CO2 uptake increased, but the present-day RF was affected little. Altering the assumptions behind the reconstructed CO2 flux or expansion patterns caused the RF to peak earlier and advanced the switch from positive to negative RF by several thousand years. Compared with NCB, including fires had only small additional effect on RF lasting less than 1000 year. The largest uncertainty in reconstructing peatland RF was associated with CH4 emissions. As shown by the consistently positive RF modelled for one site, and in some cases for the other two, peatlands with high CH4 emissions and low C accumulation rates may have remained climate warming agents since their initiation. Although uncertainties in present-day RF were mainly due to the assumed CH4 emission rates, the uncertainty in lateral expansion still had a significant effect on the present-day RF, highlighting the importance to consider uncertainties in the past peatland C balance in RF reconstructions.
  • Ramos-Roman, Maria J.; De Jonge, Cindy; Magyari, Eniko; Veres, Daniel; Ilvonen, Liisa; Develle, Anne-Lise; Seppä, Heikki (2022)
    To reconstruct changes in vegetation, temperature, and sediment geochemistry through the last 6.5 cal ka BP, in the Subcarpathian belt of the Eastern Carpathians (Romania), pollen, branched glycerol dialkyl glycerol tetraethers (brGDGTs) and X-ray fluorescence analyses have been integrated. Pollen and brGDGTs (a bacterial lipid biomarker proxy) are used as paleothermometers for reconstructing the mean annual air temperature (MAAT) and mean temperature above freezing (MAF), respectively. Both proxies show roughly consistent records. The highest MAAT and MAF occurs during the oldest part of the record (from 6.5 to 4.2 cal ka BP), and the Middle to the Late Holocene shift is marked by a prominent decrease in temperature between 5.4 and 4.2 cal ka BP, coinciding with Bond event 4 and 3. This transition is coeval with a decrease in summer insolation, shift from consistent NAO-conditions to a predominance of NAO+ phase and coincides with the beginning of the Neoglacial cooling in northern latitudes. The warm bias in the MAF reconstruction during the Late Holocene is explained as a change in the lipid provenance or in the composition of the brGDGT producers after 4.2 cal ka BP.
  • Kultti, S.; Väliranta, M.; Sarmaja-Korjonen, K.; Solovieva, N.; Virtanen, T.; Kauppila, T.; Eronen, M. (John Wiley & Sons, Ltd., 2003)
    This study investigated Holocene tree-line history and climatic change in the pre-Polar Urals, northeast European Russia. A sediment core from Mezhgornoe Lake situated at the present-day alpine tree-line was studied for pollen, plant macrofossils, Cladocera and diatoms. A peat section from Vangyr Mire in the nearby mixed mountain taiga zone was analysed for pollen. The results suggest that the study area experienced a climatic optimum in the early Holocene and that summer temperatures were at least 2°C warmer than today. Tree birch immigrated to the Mezhgornoe Lake area at the onset of the Holocene. Mixed spruce forests followed at ca. 9500-9000 14C yr BP. Climate was moist and the water level of Mezhgornoe Lake rose rapidly. The hypsithermal phase lasted until ca. 5500-4500 14C yr BP, after which the mixed forest withdrew from the Mezhgornoe catchment as a result of the climate cooling. The gradual altitudinal downward shift of vegetation zones resulted in the present situation, with larch forming the tree-line.
  • Reitalu, Triin; Bjune, Anne E.; Blaus, Ansis; Giesecke, Thomas; Helm, Aveliina; Matthias, Isabelle; Peglar, Sylvia M.; Salonen, J. Sakari; Seppae, Heikki; Vaeli, Vivika; Birks, H. John B. (2019)
    Sedimentary pollen offers excellent opportunities to reconstruct vegetation changes over past millennia. Number of different pollen taxa or pollen richness is used to characterise past plant richness. To improve the interpretation of sedimentary pollen richness, it is essential to understand the relationship between pollen and plant richness in contemporary landscapes. This study presents a regional-scale comparison of pollen and plant richness from northern Europe and evaluates the importance of environmental variables on pollen and plant richness. We use a pollen dataset of 511 lake-surface pollen samples ranging through temperate, boreal and tundra biomes. To characterise plant diversity, we use a dataset formulated from the two largest plant atlases available in Europe. We compare pollen and plant richness estimates in different groups of taxa (wind-pollinated vs. non-wind-pollinated, trees and shrubs vs. herbs and grasses) and test their relationships with climate and landscape variables. Pollen richness is significantly positively correlated with plant richness (r = 0.53). The pollen plant richness correlation improves (r = 0.63) when high pollen producers are downweighted prior to estimating richness minimising the influence of pollen production on the pollen richness estimate. This suggests that methods accommodating pollen-production differences in richness estimates deserve further attention and should become more widely used in Quaternary pollen diversity studies. The highest correlations are found between pollen and plant richness of trees and shrubs (r = 0.83) and of wind-pollinated taxa (r = 0.75) suggesting that these are the best measures of broad-scale plant richness over several thousands of square kilometres. Mean annual temperature is the strongest predictor of both pollen and plant richness. Landscape openness is positively associated with pollen richness but not with plant richness. Pollen richness values from extremely open and/or cold areas where pollen production is low should be interpreted with caution because low local pollen production increases the proportion of extra-regional pollen. Synthesis. Our results confirm that pollen data can provide insights into past plant richness changes in northern Europe, and with careful consideration of pollen-production differences and spatial scale represented, pollen data make it possible to investigate vegetation diversity trends over long time-scales and under changing climatic and habitat conditions.
  • Trondman, A. -K.; Gaillard, M. -J.; Mazier, F.; Sugita, S.; Fyfe, R.; Nielsen, A. B.; Twiddle, C.; Barratt, P.; Birks, H. J. B.; Bjune, A. E.; Bjorkman, L.; Brostrom, A.; Caseldine, C.; David, R.; Dodson, J.; Doerfler, W.; Fischer, E.; van Geel, B.; Giesecke, T.; Hultberg, T.; Kalnina, L.; Kangur, M.; van der Knaap, P.; Koff, T.; Kunes, P.; Lageras, P.; Latalowa, M.; Lechterbeck, J.; Leroyer, C.; Leydet, M.; Lindbladh, M.; Marquer, L.; Mitchell, F. J. G.; Odgaard, B. V.; Peglar, S. M.; Persson, T.; Poska, A.; Roesch, M.; Seppä, H.; Veski, S.; Wick, L. (2015)
    We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types [evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.
  • Jimenez-Moreno, Gonzalo; Anderson, R. Scott; Ramos-Roman, Maria J.; Camuera, Jon; Manuel Mesa-Fernandez, Jose; Garcia-Alix, Antonio; Jimenez-Espejo, Francisco J.; Carrion, Jose S.; Lopez-Aviles, Alejandro (2020)
    Comprehending the effects of climate variability and disturbance on forested ecosystems is paramount to successfully managing forest environments under future climate scenarios (e.g., global warming, aridi-fication increase). Changes in fossil pollen abundance in sedimentary archives record past vegetation dynamics at regional scales, mainly related to climate changes and, in the last few millennia, to human impact. Pollen records can thus provide long databases with information on how the environment reacted to climate change before the historical record. In this study, we synthesized fossil pollen data from seven sites from the Sierra Nevada in southern Spain to investigate the response of forests in the western Mediterranean area to millennial-scale climate changes and to human impact during the Holocene. In particular, here we focused on Cedrus pollen abundances, which most-likely originated from Northern Africa and were carried to Sierra Nevada by wind. Cedrus pollen has received little attention in the Iberian Peninsula palynological records, for it occurs in low concentrations and has an African source, and thus this article explores the potential to reconstruct its past history and climate. Although Cedrus abundances are generally lower than 1% in the studied pollen samples, a comparison with North African (Moroccan) Cedrus pollen records shows similar trends at long- and short-term time-scales. Therefore, this record could be used as a proxy for changes in this forest species in North Africa. As observed in the Sierra Nevada synthetic record, the increasing trend of Cedrus pollen during the Middle and Late Holocene closely correlates with decreasing summer insolation. This would have produced overall cooler annual temperatures in Northern Africa (Middle Atlas and Rif Mountains) as well as lower summer evaporation, benefiting the growth of this cool-adapted montane tree species while increasing available moisture during the summer, which is critical for this water-demanding species. Millennial-scale variability also characterizes the Sierra Nevada Cedrus synthetic pollen record. Cedrus abundance oscillations co-vary with well-known millennial-scale climatic variability that controlled cedar abundance and altitudinal distribution in montane areas of N Africa. (C) 2020 Elsevier Ltd. All rights reserved.
  • Jimenez-Moreno, Gonzalo; Anderson, R. Scott; Ramos-Roman, Maria J.; Camuera, Jon; Manuel Mesa-Fernandez, Jose; Garcia-Alix, Antonio; Jimenez-Espejo, Francisco J.; Carrion, Jose S.; Lopez-Aviles, Alejandro (2020)
    Comprehending the effects of climate variability and disturbance on forested ecosystems is paramount to successfully managing forest environments under future climate scenarios (e.g., global warming, aridi-fication increase). Changes in fossil pollen abundance in sedimentary archives record past vegetation dynamics at regional scales, mainly related to climate changes and, in the last few millennia, to human impact. Pollen records can thus provide long databases with information on how the environment reacted to climate change before the historical record. In this study, we synthesized fossil pollen data from seven sites from the Sierra Nevada in southern Spain to investigate the response of forests in the western Mediterranean area to millennial-scale climate changes and to human impact during the Holocene. In particular, here we focused on Cedrus pollen abundances, which most-likely originated from Northern Africa and were carried to Sierra Nevada by wind. Cedrus pollen has received little attention in the Iberian Peninsula palynological records, for it occurs in low concentrations and has an African source, and thus this article explores the potential to reconstruct its past history and climate. Although Cedrus abundances are generally lower than 1% in the studied pollen samples, a comparison with North African (Moroccan) Cedrus pollen records shows similar trends at long- and short-term time-scales. Therefore, this record could be used as a proxy for changes in this forest species in North Africa. As observed in the Sierra Nevada synthetic record, the increasing trend of Cedrus pollen during the Middle and Late Holocene closely correlates with decreasing summer insolation. This would have produced overall cooler annual temperatures in Northern Africa (Middle Atlas and Rif Mountains) as well as lower summer evaporation, benefiting the growth of this cool-adapted montane tree species while increasing available moisture during the summer, which is critical for this water-demanding species. Millennial-scale variability also characterizes the Sierra Nevada Cedrus synthetic pollen record. Cedrus abundance oscillations co-vary with well-known millennial-scale climatic variability that controlled cedar abundance and altitudinal distribution in montane areas of N Africa. (C) 2020 Elsevier Ltd. All rights reserved.
  • Jimenez-Moreno, Gonzalo; Anderson, R. Scott; Ramos-Roman, Maria J.; Camuera, Jon; Manuel Mesa-Fernandez, Jose; Garcia-Alix, Antonio; Jimenez-Espejo, Francisco J.; Carrion, Jose S.; Lopez-Aviles, Alejandro (2020)
    Comprehending the effects of climate variability and disturbance on forested ecosystems is paramount to successfully managing forest environments under future climate scenarios (e.g., global warming, aridi-fication increase). Changes in fossil pollen abundance in sedimentary archives record past vegetation dynamics at regional scales, mainly related to climate changes and, in the last few millennia, to human impact. Pollen records can thus provide long databases with information on how the environment reacted to climate change before the historical record. In this study, we synthesized fossil pollen data from seven sites from the Sierra Nevada in southern Spain to investigate the response of forests in the western Mediterranean area to millennial-scale climate changes and to human impact during the Holocene. In particular, here we focused on Cedrus pollen abundances, which most-likely originated from Northern Africa and were carried to Sierra Nevada by wind. Cedrus pollen has received little attention in the Iberian Peninsula palynological records, for it occurs in low concentrations and has an African source, and thus this article explores the potential to reconstruct its past history and climate. Although Cedrus abundances are generally lower than 1% in the studied pollen samples, a comparison with North African (Moroccan) Cedrus pollen records shows similar trends at long- and short-term time-scales. Therefore, this record could be used as a proxy for changes in this forest species in North Africa. As observed in the Sierra Nevada synthetic record, the increasing trend of Cedrus pollen during the Middle and Late Holocene closely correlates with decreasing summer insolation. This would have produced overall cooler annual temperatures in Northern Africa (Middle Atlas and Rif Mountains) as well as lower summer evaporation, benefiting the growth of this cool-adapted montane tree species while increasing available moisture during the summer, which is critical for this water-demanding species. Millennial-scale variability also characterizes the Sierra Nevada Cedrus synthetic pollen record. Cedrus abundance oscillations co-vary with well-known millennial-scale climatic variability that controlled cedar abundance and altitudinal distribution in montane areas of N Africa. (C) 2020 Elsevier Ltd. All rights reserved.
  • Arppe, Laura; Karhu, Juha A.; Vartanyan, Sergey; Drucker, Dorothée G.; Etu-Sihvola, Heli; Bocherens, Hervé (2019)
    The world's last population of woolly mammoths (Mammuthus primigenius) lived on Wrangel Island persisting well into the Holocene, going extinct at ca. 4000 cal BP. According to the frequency of 'radiocarbon dated mammoth remains from the island, the extinction appears fairly abrupt. This study investigates the ecology of the Wrangel Island mammoth population by means of carbon, nitrogen and sulfur isotope analyses. We report new isotope data on 77 radiocarbon dated mammoth specimens from Wrangel Island and Siberia, and evaluate them in relation to previously published isotope data for Pleistocene mammoths from Beringia and lower latitude Eurasia, and the other insular Holocene mammoth population from St. Paul Island. Contrary to prior suggestions of gradual habitat deterioration, the nitrogen isotope values of the Wrangel Island mammoths do not support a decline in forage quality/quantity, and are in fact very similar to their north Beringian forebears right to the end. However, compared to Siberian mammoths, those from Wrangel Island show a difference in their energy economy as judged by the carbon isotope values of structural carbonate, possibly representing a lower need of adaptive strategies for survival in extreme cold. Increased mid-Holocene weathering of rock formations in the central mountains is suggested by sulfur isotope values. Scenarios related to water quality problems stemming from increased weathering, and a possibility of a catastrophic starvation event as a cause of, or contributing factor in their demise are discussed. (C) 2019 The Authors. Published by Elsevier Ltd.
  • Wegner, Carolyn; Bennett, Katrina E.; de Vernal, Anne; Forwick, Matthias; Fritz, Michael; Heikkilä, Maija; Lacka, Magdalena; Lantuit, Hugues; Laska, Michal; Moskalik, Mateusz; O'Regan, Matt; Pawlowska, Joanna; Prominska, Agnieszka; Rachold, Volker; Vonk, Jorien E.; Werner, Kirstin (2015)
    Arctic coastal zones serve as a sensitive filter for terrigenous matter input onto the shelves via river discharge and coastal erosion. This material is further distributed across the Arctic by ocean currents and sea ice. The coastal regions are particularly vulnerable to changes related to recent climate change. We compiled a pan-Arctic review that looks into the changing Holocene sources, transport processes and sinks of terrigenous sediment in the Arctic Ocean. Existing palaeoceanographic studies demonstrate how climate warming and the disappearance of ice sheets during the early Holocene initiated eustatic sea-level rise that greatly modified the physiography of the Arctic Ocean. Sedimentation rates over the shelves and slopes were much greater during periods of rapid sea-level rise in the early and middle Holocene, as a result of the relative distance to the terrestrial sediment sources. However, estimates of suspended sediment delivery through major Arctic rivers do not indicate enhanced delivery during this time, which suggests enhanced rates of coastal erosion. The increased supply of terrigenous material to the outer shelves and deep Arctic Ocean in the early and middle Holocene might serve as analogous to forecast changes in the future Arctic.